UNIVERSITY OF UTAH
 ELECTRICAL \& COMPUTER ENGINEERING DEPARTMENT

1. In a-c, the voltage $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$ across a 10 nF capacitor is listed. Find the current, $\mathrm{i}_{\mathrm{C}}(\mathrm{t})$, flowing in the capacitor in each case as a function of time:

(a) ${ }^{v_{C}}(t)=6 V$
(b) $\mathrm{v}_{\mathrm{C}}(\mathrm{t})=42 \mathrm{t} \mathrm{kV} / \mathrm{sec}$
(c) $v_{C}(t)=1-e^{-t / 2 \mu \sec } V$
2. In $a-c$, the current $i_{L}(t)$ flowing into a $6 \mu \mathrm{H}$ inductor is listed. Find the voltage, $\mathrm{v}_{\mathrm{L}}(\mathrm{t})$, across the inductor in each case as a function of time.

(a) $\quad \mathrm{i}_{\mathrm{L}}(\mathrm{t})=9 \mathrm{~mA}$
(b) $\mathrm{i}_{\mathrm{L}}(\mathrm{t})=15 \mathrm{t} \mu \mathrm{A} / \mathrm{sec}$
(c) $\mathrm{i}_{\mathrm{L}}(\mathrm{t})=8 \cos (2 \pi \times 5 \times \mathrm{t}) \mathrm{A}$
3. The following equation describes the voltage, v_{C}, across a capacitor as a function of time. Find the time, t, at which v_{C} is equal to $-6 V$. Plot $v_{C}(t)$. You may use Matlab.

$$
v_{C}(t)=-12+12\left(1-e^{-t / 10 \mu \mathrm{~s}}\right) \mathrm{V}
$$

4. The following equation describes the voltage, v_{L}, across an inductor as a function of time. Find an expression for the current, $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$, through the inductor as a function of time. Assume that $\mathrm{i}_{\mathrm{L}}(\mathrm{t}=0)=0 \mathrm{~A} . \operatorname{Plot} \mathrm{i}_{\mathrm{L}}(\mathrm{t})$. You may use Matlab.

$$
v_{L}(t)=6-2 e^{-t / 50 m s} V
$$

5. Find the voltage, v_{C}, on the capacitor in the circuit below as a function of time if the initial condition is, $\mathrm{v}_{\mathrm{C}}\left(\mathrm{t}=0^{+}\right)=3 \mathrm{~V}$.

6. Find the current, i_{L}, through the inductor in the circuit below for $\mathrm{t}>0$ if the initial condition is $i_{L}(t=0)=3 \mathrm{~mA}$.

7. Find the voltage, v_{C}, across the capacitor in the circuit below for $t>0$ if $v_{C}(t=0)=15 \mathrm{~V}$.

8. After being open for a long time, the switch closes at $\mathrm{t}=0$.

(a) Find an expression for $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$ for $\mathrm{t} \geq 0$.
(b) Find the energy stored in the capacitor at time $\mathrm{t}=10 \mathrm{~ms}$.
9.

(a) Find an expression for $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ for $\mathrm{t} \geq 0$. Note: Assume the initial current in the L is created by circuitry not shown in the diagram.
(b) Find the energy stored in the inductor at time $t=10 \mathrm{~ms}$.
10. The switch has been in a position a for a long time. It switched to position b at $\mathrm{t}=0$.

(a) Find an expression for $V_{c}(t)$ for $t>0$.
(b) Find the current, i_{g}, in R as a function of time.

UNIVERSITY OF UTAH
 ELECTRICAL \& COMPUTER ENGINEERING DEPARTMENT

1. In a-c, the voltage $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$ across a 10 nF capacitor is listed. Find the current, $\mathrm{i}_{\mathrm{C}}(\mathrm{t})$, flowing in the capacitor in each case as a function of time:

(a) $v_{C}(t)=6 V$
(b) $\mathrm{v}_{\mathrm{C}}(\mathrm{t})=42 \mathrm{t} \mathrm{kV} / \mathrm{sec}$
(c) $v_{C}(t)=1-e^{-t / 2 \mu \sec } V$
2. In a-c, the current $i_{L}(t)$ flowing into a $6 \mu \mathrm{H}$ inductor is listed. Find the voltage, $\mathrm{v}_{\mathrm{L}}(\mathrm{t})$, across the inductor in each case as a function of time.

(a) $\mathrm{i}_{\mathrm{L}}(\mathrm{t})=9 \mathrm{~mA}$
(b) $\mathrm{i}_{\mathrm{L}}(\mathrm{t})=15 \mathrm{t} \mu \mathrm{A} / \mathrm{sec}$
(c) $\mathrm{i}_{\mathrm{L}}(\mathrm{t})=8 \cos (2 \pi \times 5 \times \mathrm{t}) \mathrm{A}$
3. The following equation describes the voltage, v_{C}, across a capacitor as a function of time. Find the time, t, at which v_{C} is equal to $-6 V$. Plot $v_{C}(t)$. You may use Matlab.

$$
v_{C}(t)=-12+12\left(1-e^{-t / 10 \mu \mathrm{~s}}\right) \mathrm{V}
$$

4. The following equation describes the voltage, v_{L}, across an inductor as a function of time. Find an expression for the current, $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$, through the inductor as a function of time. Assume that $\mathrm{i}_{\mathrm{L}}(\mathrm{t}=0)=0 \mathrm{~A} . \operatorname{Plot} \mathrm{i}_{\mathrm{L}}(\mathrm{t})$. You may use Matlab.

$$
v_{L}(t)=6-2 e^{-t / 50 m s} V
$$

5. Find the voltage, v_{C}, on the capacitor in the circuit below as a function of time if the initial condition is, $\mathrm{v}_{\mathrm{C}}\left(\mathrm{t}=0^{+}\right)=3 \mathrm{~V}$.

6. Find the current, i_{L}, through the inductor in the circuit below for $\mathrm{t}>0$ if the initial condition is $i_{L}(t=0)=3 \mathrm{~mA}$.

7. Find the voltage, v_{C}, across the capacitor in the circuit below for $t>0$ if $v_{C}(t=0)=15 \mathrm{~V}$.

8. After being open for a long time, the switch closes at $\mathrm{t}=0$.

(a) Find an expression for $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$ for $\mathrm{t} \geq 0$.
(b) Find the energy stored in the capacitor at time $\mathrm{t}=10 \mathrm{~ms}$.
9.

(a) Find an expression for $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ for $\mathrm{t} \geq 0$. Note: Assume the initial current in the L is created by circuitry not shown in the diagram.
(b) Find the energy stored in the inductor at time $\mathrm{t}=10 \mathrm{~ms}$.
10. The switch has been in a position a for a long time. It switched to position b at $\mathrm{t}=0$.

(a) Find an expression for $\mathrm{V}_{\mathrm{c}}(\mathrm{t})$ for $\mathrm{t}>0$.
(b) Find the current, i_{g}, in R as a function of time.

