UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT

ECE 1270 **HOMEWORK #5** Summer 2009

1. In a-c, the voltage $v_C(t)$ across a 10nF capacitor is listed. Find the current, $i_C(t)$, flowing in the capacitor in each case as a function of time:

- (a) $v_C(t) = 6V$
- (b) $v_C(t) = 42t \text{ kV/sec}$
- (c) $v_C(t) = 1 e^{-t/2\mu \sec V}$

2. In a-c, the current $i_L(t)$ flowing into a $6\mu H$ inductor is listed. Find the voltage, $v_L(t)$, across the inductor in each case as a function of time.

- (a) $i_L(t) = 9mA$
- (b) $i_L(t) = 15t\mu A / sec$
- (c) $i_L(t) = 8\cos(2\pi \times 5 \times t)A$
- 3. The following equation describes the voltage, v_C , across a capacitor as a function of time. Find the time, t, at which v_C is equal to -6V. Plot $v_C(t)$. You may use Matlab.

$$v_C(t) = -12 + 12(1 - e^{-t/10\mu s})V$$

4. The following equation describes the voltage, v_L , across an inductor as a function of time. Find an expression for the current, $i_L(t)$, through the inductor as a function of time. Assume that $i_L(t=0)=0$ A. Plot $i_L(t)$. You may use Matlab.

$$v_L(t) = 6 - 2e^{-t/50ms}V$$

5. Find the voltage, v_C , on the capacitor in the circuit below as a function of time if the initial condition is, $v_C(t=0^+)=3V$.

$$C = 3\mu F - VC$$

$$R = 3k\Omega$$

6. Find the current, i_L , through the inductor in the circuit below for t>0 if the initial condition is $i_L(t=0)=3\text{mA}$.

7. Find the voltage, v_C , across the capacitor in the circuit below for t > 0 if $v_C(t = 0) = 15V$.

$$C = 2\mu F$$

$$+ v_C$$

$$R = 3k\Omega$$

8. After being open for a long time, the switch closes at t = 0.

- (a) Find an expression for $v_C(t)$ for $t \ge 0$.
- (b) Find the energy stored in the capacitor at time t = 10 ms.

9.

- (a) Find an expression for $i_L(t)$ for $t \ge 0$. Note: Assume the initial current in the L is created by circuitry not shown in the diagram.
- (b) Find the energy stored in the inductor at time t = 10 ms.
- 10. The switch has been in a position a for a long time. It switched to position b at t = 0.

- (a) Find an expression for $V_c(t)$ for t > 0.
- (b) Find the current, i_g , in R as a function of time.

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT

ECE 1270 **HOMEWORK #5** Summer 2009

1. In a-c, the voltage $v_C(t)$ across a 10nF capacitor is listed. Find the current, $i_C(t)$, flowing in the capacitor in each case as a function of time:

- (a) $v_C(t) = 6V$
- (b) $v_C(t) = 42t \text{ kV/sec}$
- (c) $v_C(t) = 1 e^{-t/2\mu \sec V}$

2. In a-c, the current $i_L(t)$ flowing into a $6\mu H$ inductor is listed. Find the voltage, $v_L(t)$, across the inductor in each case as a function of time.

- (a) $i_L(t) = 9mA$
- (b) $i_L(t) = 15t\mu A / sec$
- (c) $i_L(t) = 8\cos(2\pi \times 5 \times t)A$
- 3. The following equation describes the voltage, v_C , across a capacitor as a function of time. Find the time, t, at which v_C is equal to -6V. Plot $v_C(t)$. You may use Matlab.

$$v_C(t) = -12 + 12(1 - e^{-t/10\mu s})V$$

4. The following equation describes the voltage, v_L , across an inductor as a function of time. Find an expression for the current, $i_L(t)$, through the inductor as a function of time. Assume that $i_L(t=0)=0$ A. Plot $i_L(t)$. You may use Matlab.

$$v_L(t) = 6 - 2e^{-t/50ms}V$$

5. Find the voltage, v_C , on the capacitor in the circuit below as a function of time if the initial condition is, $v_C(t=0^+)=3V$.

$$C = 3\mu F - VC$$

$$R = 3k\Omega$$

6. Find the current, i_L , through the inductor in the circuit below for t>0 if the initial condition is $i_L(t=0)=3\text{mA}$.

7. Find the voltage, v_C , across the capacitor in the circuit below for t > 0 if $v_C(t = 0) = 15V$.

$$C = 2\mu F$$

$$+ v_C$$

$$R = 3k\Omega$$

8. After being open for a long time, the switch closes at t = 0.

- (a) Find an expression for $v_C(t)$ for $t \ge 0$.
- (b) Find the energy stored in the capacitor at time t = 10 ms.

9.

- (a) Find an expression for $i_L(t)$ for $t \ge 0$. Note: Assume the initial current in the L is created by circuitry not shown in the diagram.
- (b) Find the energy stored in the inductor at time t = 10 ms.
- 10. The switch has been in a position a for a long time. It switched to position b at t = 0.

- (a) Find an expression for $V_c(t)$ for t > 0.
- (b) Find the current, i_g , in R as a function of time.