1. After being closed a long time, the switch opens at $t = 0$. Find $i_1(t)$ for $t > 0$.

2. After being open for a long time, the switch closes at $t = 0$. Find $V_1(t)$ for $t > 0$.

3. After being open for a long time, the switch closes at $t = 0$. Find $i_1(t)$ for $t > 0$.

UNIVERSITY OF UTAH
ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT
ECE 1270
HOMEWORK #6
Summer 2009
4. After being open for a long time, the switch closes at $t = 0$. Find $i_1(t)$ for $t > 0$.

5. Using superposition, derive an expression for V that contains no circuit quantities other than $i_s, R_1, R_2, R_3, R_4, \alpha$, or V_s.

6. After being closed for a long time, the switch opens at $t=0$.
 a) Calculate the energy stored on the inductor as $t \to \infty$.
 b) Write a numerical expression for $v(t)$ for $t>0$.
7. After being open for a long time, the switch closes at \(t=0 \).
 a) Write an expression for \(v_c(t=0^+) \).
 b) Write an expression for \(v_c(t>0) \) in terms of \(i_s, R_1, R_2, R_3, \) and \(C \).

8. Calculate the value of \(R_L \) that would absorb maximum power.

9. Calculate that value of maximum power \(R_L \) could absorb.

10. Using superposition, derive an expression for \(i \) that contains no circuit quantities other than \(i_s, R_1, R_2, R_3, R_4, \alpha \), or \(V_s \).