UNIVERSITY OF UTAH
 ELECTRICAL \& COMPUTER ENGINEERING DEPARTMENT

1. After being closed a long time, the switch opens at $t=0$. Find $i_{1}(t)$ for $t>0$.

2. After being open for a long time, the switch closes at $t=0$. Find $V_{1}(t)$ for $t>0$.

3. After being open for a long time, the switch closes at $t=0$. Find $i_{1}(t)$ for $t>0$.

4. After being open for a long time, the switch closes at $t=0$. Find $i_{1}(t)$ for $t>0$.

5. Using superposition, derive an expression for V that contains no circuit quantities other than $\mathrm{i}_{\mathrm{s}}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}, \alpha$, or V_{s}.

6. After being closed for a long time, the switch opens at $\mathrm{t}=0$.
a) Calculate the energy stored on the inductor as $t->\infty$.
b) Write a numerical expression for $v(t)$ for $t>0$.

7. After being open for a long time, the switch closes at $t=0$.
a) Write an expression for $v_{c}\left(\mathrm{t}=0^{+}\right)$.
b) Write an expression for $v_{c}(\mathrm{t}>0)$ in terms of $\mathrm{i}_{\mathrm{s}}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$, and C .

Use the circuit below for both problem 8 and 9.
8. Calculate the value of R_{L} that would absorb maximum power.
9. Calculate that value of maximum power R_{L} could absorb.

10. Using superposition, derive an expression for i that contains no circuit quantities other than $\mathrm{i}_{\mathrm{s}}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}, \alpha$, or V_{S}.

