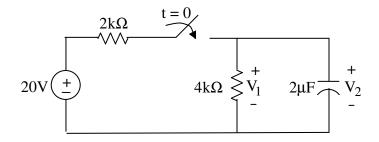
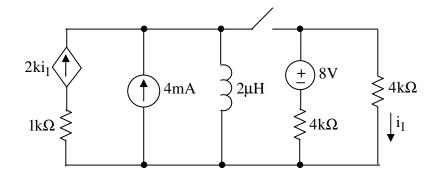
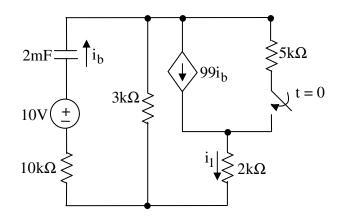

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT

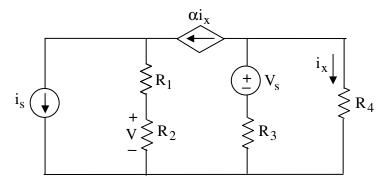
ECE 1270

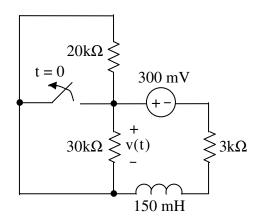

HOMEWORK #6

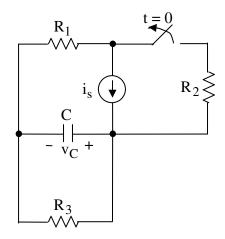
Summer 2009


1. After being closed a long time, the switch opens at t = 0. Find $i_1(t)$ for t > 0.

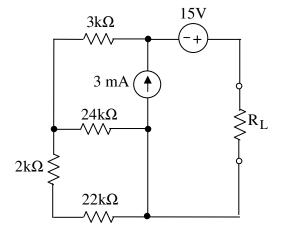

2. After being open for a long time, the switch closes at t = 0. Find $V_1(t)$ for t > 0.


3. After being open for a long time, the switch closes at t = 0. Find $i_1(t)$ for t > 0.

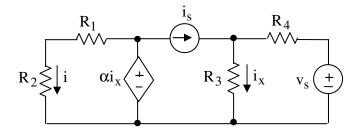

4. After being open for a long time, the switch closes at t = 0. Find $i_1(t)$ for t > 0.


5. Using superposition, derive an expression for V that contains no circuit quantities other than i_s , R_1 , R_2 , R_3 , R_4 , α , or V_s .

- 6. After being closed for a long time, the switch opens at t=0.
 - a) Calculate the energy stored on the inductor as t $\rightarrow \infty$.
 - b) Write a numerical expression for v(t) for t> 0.



- 7. After being open for a long time, the switch closes at t=0.
 - a) Write an expression for $v_c(t=0^+)$.
 - b) Write an expression for $v_c(t>0)$ in terms of i_s , R_1 , R_2 , R_3 , and C.



Use the circuit below for both problem 8 and 9.

- 8. Calculate the value of R_L that would absorb maximum power.
- 9. Calculate that value of maximum power R_L could absorb.

10. Using superposition, derive an expression for *i* that contains no circuit quantities other than $i_s, R_1, R_2, R_3, R_4, \alpha$, or V_s .

