UNIVERSITY OF UTAH ELECTRICAL \& COMPUTER ENGINEERING DEPARTMENT

1. After being closed a long time, the switch opens at $t=0$. Find $i_{1}(t)$ for $t>0$.

Step 1: (Redraw circuit at $\mathbf{t}=\mathbf{0}^{-}$and solve for i_{L}. Inductor acts as a wire since it has sat for a long time)

This circuit is a current divider:

$$
i_{L}=\frac{60 \mu \cdot 10 k}{10 k+10 k}=30 \mu \mathrm{~A}
$$

Step 2: Initial Value (Redraw circuit at $\mathbf{t}=\mathbf{0}^{+}$and solve for unknown variable. Inductor acts as a current source since the current in the inductor has to remain the same.)

Step 3: Final Value(Redraw circuit at $\mathbf{t}=\infty$ and solve for unknown variable. Inductor acts as a wire since it has sat for a long time in this position.)

There are no sources connected to the final circuit:

$$
\mathrm{i}_{1}=0 \mathrm{~A}
$$

To find R_{eq} the inductor is removed from the final circuit to find path from top of inductor to bottom of inductor:

$$
\tau=\frac{L}{\mathrm{R}_{e q}}=\frac{3 m}{10 k+10 k}=150 \mathrm{nsec}
$$

Step 4: Plug values into general equation:

$$
i_{1}(t)=0+[-30 \mu-0] e^{-t / 150 n \mathrm{sec}} A=-30 \mu e^{-t / 150 \mathrm{nsec}} A
$$

2. After being open for a long time, the switch closes at $t=0$. Find $V_{1}(t)$ for $t>0$.

Step 1: (Redraw circuit at $\mathbf{t}=\mathbf{0}^{-}$and solve for V_{C}. Capacitor acts as an open since it has been a long time)

There is no source connected between V_{c} so $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{C}}=0$

Step 2: Initial Value (Redraw circuit at $\mathbf{t}=\mathbf{0}^{+}$and solve for unknown variable. Capacitor acts as a voltage source since the voltage across capacitor has to remain the same.)

Step 3: Final Value(Redraw circuit at $\mathbf{t}=\boldsymbol{\infty}$ and solve for unknown variable. Capacitor acts as an open since it has sat for a long time in this position.)

V 1 is found by a voltage divider:

$$
V_{1}=\frac{20 \cdot 4 k}{2 k+4 k}=\frac{80 k}{6 k}=\frac{40}{3} V
$$

To find $\mathrm{R}_{\text {eq }}$ the capacitor is removed from the final circuit(same circuit) to find path from top to
bottom of capacitor. Independent sources are removed and the equivalent resistance is found:

$$
\tau=\mathrm{R}_{e q} \cdot C=(4 k \| 2 k) \cdot 2 \mu=\left(\frac{1}{\frac{1}{4 k}+\frac{1}{2 k}}\right) \cdot 2 \mu=\frac{16 m}{6} \sec
$$

Step 4: Plug values into general equation:

$$
V_{1}(t)=\frac{40}{3}+\left[0-\frac{40}{3}\right] e^{-6 t / 16 m \mathrm{sec}} V=\frac{40}{3}\left(1-e^{-6 t / 16 m \mathrm{sec}}\right) V
$$

3. After being open for a long time, the switch closes at $t=0$. Find $i_{1}(t)$ for $t>0$.

Step 1: (Redraw circuit at $\mathbf{t}=\mathbf{0}^{-}$and solve for i_{L}. Inductor acts as a wire since it has sat for a long time)

When the circuit contains a dependent source, an extra step is needed to determine the value of the dependent variable:

Note: $-i_{1} \cdot 4 k+8-i_{1} \cdot 4 k=0 \Rightarrow i_{1}=\frac{8}{8 k}=1 \mathrm{~mA}$
Taking a current summation at the top node can be used to find i_{L} gives:

$$
i_{L}=2 k \cdot i_{1}+4 m \Rightarrow i_{L}=2 k \cdot 1 m+4 m=2.004 A
$$

Step 2: Initial Value (Redraw circuit at $\mathbf{t}=\mathbf{0}^{+}$and solve for unknown variable. Inductor acts as a current source since the current in the inductor has to remain the same.)

Solve the circuit for i_{1}. Mesh currents or node-voltage can be used. Node-voltage method:

- With dependent sources: solve for dependent variable in terms of either the mesh current or the node-voltage.

$$
\begin{aligned}
& i_{1}=\left(\frac{V_{1}}{4 k}\right) \\
& -2 k \cdot i_{1}-4 m+2.004+\left(\frac{V_{1}-8}{4 k}\right)+i_{1}=0 \\
& -2 k \cdot\left(\frac{V_{1}}{4 k}\right)-4 m+2.004+\left(\frac{V_{1}-8}{4 k}\right)+\left(\frac{V_{1}}{4 k}\right)=0
\end{aligned}
$$

$$
V_{1}\left(\frac{-2 k}{4 k}+\frac{1}{4 k}+\frac{1}{4 k}\right)=+4 m-2.004+\frac{8}{4 k} \quad \Rightarrow \quad V_{1}=-1.998 \cdot\left(\frac{4 k}{-2.002 k}\right) \approx 4 V
$$

The desired variable is $\mathrm{i}_{1}: \quad i_{1}=\left(\frac{V_{1}}{4 k}\right)=\frac{4}{4 k}=1 \mathrm{~mA}$

Step 3: Final Value(Redraw circuit at $\mathbf{t}=\infty$ and solve for unknown variable. Inductor acts as a wire since it has sat for a long time in this position.)

To find R_{eq} the inductor is removed from the final circuit to find path from top of inductor to bottom of inductor(Thevenin Resistance):

Using a test source: $R_{t h}=\frac{V_{\text {test }}}{I_{\text {test }}}$
Setting $\mathrm{I}_{\text {test }}=1 \mathrm{~A}$ means that only $\mathrm{V}_{\text {test }}$ needs to be found.

$$
V_{\text {test }}=V_{1}
$$

$$
i_{1}=\left(\frac{V_{1}}{4 k}\right)
$$

$$
-2 k \cdot i_{1}-4 m-1+\left(\frac{V_{1}-8}{4 k}\right)+i_{1}=0
$$

$$
-2 k \cdot\left(\frac{V_{1}}{4 k}\right)-4 m-1+\left(\frac{V_{1}-8}{4 k}\right)+\left(\frac{V_{1}}{4 k}\right)=0
$$

$$
V_{1}\left(\frac{-2 k}{4 k}+\frac{1}{4 k}+\frac{1}{4 k}\right)=+4 m+1+\frac{8}{4 k} \quad \Rightarrow \quad V_{1}=1.006 \cdot\left(\frac{4 k}{-2.002 k}\right) \approx-2 V
$$

$$
V_{t e s t}=-2 V
$$

$$
R_{t h}=\frac{V_{\text {test }}}{I_{\text {test }}}=\left|\frac{-2 V}{1 A}\right|=2 \Omega
$$

$$
\tau=\frac{L}{\mathrm{R}_{e q}}=\frac{2 \mu}{2}=1 \mu \mathrm{sec}
$$

Step 4: Plug values into general equation:

$$
i_{1}(t)=0+[1 m-0] e^{-t / / \mu \mathrm{sec}} A=1 m e^{-t / / \mu \mathrm{sec}} A
$$

4. After being open for a long time, the switch closes at $t=0$. Find $i_{1}(t)$ for $t>0$.

Step 1: (Redraw circuit at $\mathbf{t}=\mathbf{0}^{-}$and solve for V_{C}. Capacitor acts as an open since it has been a long time)

Solving for the dependent variable:
$i b=0$ which opens the dependent source $=>99 i b=0$
Taking a V-loop to get V_{c} value(Be CarefulIt is not 0 when there is a path with a V src.) $+0+10+V_{C}-0=0 \Rightarrow V_{C}=-10 \mathrm{~V}$

Step 2: Initial Value (Redraw circuit at $\mathbf{t}=\mathbf{0}^{+}$and solve for unknown variable. Capacitor acts as a voltage source since the voltage across capacitor has to remain the same.)

Using node-voltage to solve this circuit to find i_{1} :
First find dependent variable in terms of nodevoltage variable, V_{1}.

$$
i_{b}=\frac{V_{1}-(-10)-(-(-10))}{10 k}=\frac{V_{1}}{10 k}
$$

Next, take current summation equation at V_{1} node:

$$
\frac{V_{1}}{10 k}+\frac{V_{1}}{3 k}-\frac{\left(V_{1}-V_{2}\right)}{2 k}=0
$$

Current summation equation at V_{2} node:

$$
\frac{\left(V_{2}-V_{1}\right)}{2 k}-99 \cdot \frac{V_{1}}{10 k}-\frac{\left(0-V_{2}\right)}{5 k}=0
$$

Plugging into the second equation:

$$
\begin{aligned}
& \frac{V_{2}}{2 k}-\left(\frac{-15 V_{2}}{4}\right)\left(\frac{1}{2 k}\right)-99 \cdot \frac{1}{10 k}\left(\frac{-15 V_{2}}{4}\right)+\frac{V_{2}}{5 k}=0 \\
& V_{2}\left(\frac{1}{2 k}+\frac{15}{8 k}+\frac{99(15)}{40 k}+\frac{1}{5 k}\right)=0 \Rightarrow V_{2}=0 \\
& V_{1}=0 \\
& i_{1}=0
\end{aligned}
$$

Step 3: Final Value(Redraw circuit at $\mathbf{t}=\infty$ and solve for unknown variable. Capacitor acts as an open since it has sat for a long time in this position.)

$\mathrm{i}_{\mathrm{b}}=0 \quad$ this means that 99 ib source becomes open. $\mathrm{i}_{1}=0$

Since i_{1} is always the same $=>i_{1}(t)=0$.
5. Using superposition, derive an expression for V that contains no circuit quantities other than $\mathrm{i}_{\mathrm{s}}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}, \alpha$, or V_{S}.

Step 1: is $=0$ (off), Vs $=o n$

Using a voltage loop and then substituting above eq:
$\left(+i_{1}-i_{2}\right) R_{3}+V_{S}-i_{2} R_{4}=0$
$\left(-\alpha i_{x}-i_{x}\right) R_{3}+V_{S}-i_{x} R_{4}=0$
$i_{x}\left(+\alpha R_{3}+R_{3}+R_{4}\right)=V_{S}$
$i_{x}=\frac{V_{S}}{\left(+\alpha R_{3}+R_{3}+R_{4}\right)}$
$V=\alpha i_{x} R_{2}=\frac{\alpha V_{S} R_{2}}{\left(+\alpha R_{3}+R_{3}+R_{4}\right)}$

Step 1: is=on, Vs=0(off)
Using mesh currents:

$$
\begin{aligned}
& i_{1}=i_{s} \\
& i_{2}=-\alpha i_{x} \\
& i_{3}=i_{x}
\end{aligned}
$$

Using a voltage loop and then substituting above eq:

$$
\begin{aligned}
& \left(+i_{2}-i_{3}\right) R_{3}-i_{3} R_{4}=0 \\
& \left(-\alpha i_{x}-i_{x}\right) R_{3}-i_{x} R_{4}=0 \\
& i_{x}\left(+\alpha R_{3}+R_{3}+R_{4}\right)=0 \\
& i_{x}=0 \\
& i_{2}=0 \\
& V=\left(+i_{1}-i_{2}\right) R_{2}=i_{s} R_{2}
\end{aligned}
$$

The total V is the sum of both solutions:
$V=i_{s} R_{2}+\frac{\alpha V_{S} R_{2}}{\left(+\alpha R_{3}+R_{3}+R_{4}\right)}$
6. After being closed for a long time, the switch opens at $\mathrm{t}=0$.
a) Calculate the energy stored on the inductor as $t->\infty$.
b) Write a numerical expression for $v(t)$ for $\mathrm{t}>0$.

Sol.'v: a) Ast->>, the switch is open and the L acts like a wire. The $20 \mathrm{k} \Omega$ and the $30 \mathrm{k} \Omega$ are in parallel, (which is $12 \mathrm{k} \Omega$), and we use Ohm's law to find $i_{L}(t \rightarrow \infty)$:

$$
i_{L}(t \rightarrow \infty)=\frac{300 \mathrm{mV}}{12 \mathrm{k} \Omega+3 \mathrm{k} \Omega}=\frac{300 \mathrm{mV}}{15 \mathrm{kS}}=20 \mu \mathrm{~A}
$$

The stored energy is a function of the square of the current in the inductor:

$$
w_{L}(t \rightarrow \infty)=\frac{1}{2} L i_{L}^{2}(t \rightarrow \infty)=\frac{1}{2} 150 \mathrm{~m} \cdot(20 \mu)^{2} \mathrm{~J}=30 \mathrm{pJ}
$$

b) We first find the current in the inductor for $t=0^{-}$. The switch is closed, shorting out both the $20 \mathrm{k} \Omega$ and $30 \mathrm{k} \Omega$ resistors. The inductor looks like a wire. This leaves only the 300 mV source and $3 \mathrm{k} \Omega$ resistor:

$$
i_{L}\left(0^{-}\right)=\frac{300 \mathrm{mV}}{3 \mathrm{k} \Omega}=100 \mu \mathrm{~A}
$$

At $t=0^{+}$, the switch is open, the $20 \mathrm{k} \Omega$ and the $30 \mathrm{k} \Omega$ are in parallel, (which is $12 \mathrm{k} \Omega$) and the inductor acts like a current source with the same current as the inductor had at $t=0$. The voltage, $v\left(t=0^{+}\right)$, is given by the inductor current times the parallel resistance of $12 \mathrm{k} \Omega$.

$$
v\left(t=0^{+}\right)=100 \mu \mathrm{~A} \cdot 12 \mathrm{k} \Omega=1.2 \mathrm{~V}
$$

From earlier, we have that the inductor current as t approaches infinity is $10 \mu \mathrm{~A}$. The voltage, $v(t->\infty)$, is given by this inductor current times the parallel resistance of $12 \mathrm{k} \Omega$.

$$
v(t \rightarrow \infty)=20 \mu \mathrm{~A} \cdot 12 \mathrm{k} \Omega=0.24 \mathrm{~V}
$$

Now we use the general form of solution for $R L$ problems:

$$
v(t>0)=v(t \rightarrow \infty)+\left[v\left(0^{+}\right)-v(t \rightarrow \infty)\right] e^{-t /\left(L / R_{\mathrm{Th}}\right)}
$$

or, with $L / R_{\mathrm{Th}}=150 \mathrm{mH} /(12 \mathrm{k} \Omega+3 \mathrm{k} \Omega)=10 \mu \mathrm{~s}$:

$$
v(t>0)=0.24+[1.2-0.24] e^{-t / 10 \mu \mathrm{~s}} \mathrm{~V}=0.24+0.96 e^{-t / 10 \mu \mathrm{~s}} \mathrm{~V}
$$

7. After being open for a long time, the switch closes at $t=0$.
a) Write an expression for $v_{c}\left(\mathrm{t}=0^{+}\right)$.
b) Write an expression for $v_{c}(\mathrm{t}>0)$ in terms of $\mathrm{i}_{\mathrm{s}}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$, and C .

Sol'N: a) We first find the voltage across the capacitor for $t=0$. The switch is open, eliminating R_{2} from consideration. The capacitor looks like an open. This leaves only the i_{s} source driving R_{1} and R_{3} in series. The capacitor is directly across R_{3} and so has the same voltage as R_{3} :

$$
v_{C}\left(0^{-}\right)=i_{s} R_{3}
$$

At $t=0^{+}$, the capacitor has the same voltage as at $t=0^{-}$.

$$
v_{C}\left(0^{+}\right)=i_{s} R_{3}
$$

b) As $t \rightarrow \infty$, the switch is closed, the C acts like an open, and we have a current divider with R_{2} on one side and $R_{1}+R_{3}$ on the other side. The current through R_{3} is

$$
i=i_{s} \frac{R_{2}}{R_{1}+R_{2}+R_{3}} .
$$

The voltage, v_{C}, as $t \rightarrow \infty$ is the same as the voltage across R_{3}, and is given by i times R_{3} :

$$
v_{C}(t \rightarrow \infty)=i_{s} \frac{R_{2} R_{3}}{R_{1}+R_{2}+R_{3}}
$$

For the time constant of the circuit, we take the Thevenin resistance from the terminals where the C is attached with the switch closed for $t>0$. Since we have only an independent source, we turn off the source, i_{s}, and look into the circuit from the terminals where C is attached (but without the C). We see R_{3} in parallel with $R_{1}+R_{2}$.

$$
R_{\mathrm{Th}}=R_{3} \mathrm{II}\left(R_{1}+R_{2}\right)
$$

Now we use the general formula for $R C$ circuit solutions:

$$
v(t>0)=v(t \rightarrow \infty)+\left[v\left(0^{+}\right)-v(t \rightarrow \infty)\right] e^{-t / R_{\mathrm{Th}} C}
$$

or

$$
v(t>0)=i_{s} \frac{R_{2} R_{3}}{R_{1}+R_{2}+R_{3}}+\left[i_{s} R_{3}-i_{s} \frac{R_{2} R_{3}}{R_{1}+R_{2}+R_{3}}\right] e^{-t / R_{3} \|\left(R_{1}+R_{2}\right) C}
$$

Use the circuit below for both problem 8 and 9 .
8. Calculate the value of R_{L} that would absorb maximum power.

Use $R_{\mathrm{L}}=R_{\mathrm{Th}}$ for maximum power transfer. To find R_{Th}, we turn off the independent sources and look in from the terminals where R_{L} is attached (with R_{L} removed). The voltage source becomes a wire, and the current source becomes an open circuit.

$$
R_{\mathrm{Th}}=(2 \mathrm{k} \Omega+22 \mathrm{k} \Omega) \| 24 \mathrm{k} \Omega+3 \mathrm{k} \Omega=12 \mathrm{k} \Omega+3 \mathrm{k} \Omega=15 \mathrm{k} \Omega
$$

We use this Thevenin resistance value for $R_{\mathbf{L}}$:

$$
R_{\mathrm{L}}=15 \mathrm{k} \Omega
$$

9. Calculate that value of maximum power R_{L} could absorb.

The maximum power transferred is

$$
p_{\max }=\frac{v_{\mathrm{Th}}^{2}}{4 \mathrm{R}_{\mathrm{Th}}}
$$

The Thevenin equivalent voltage is the voltage across R_{L} without R_{L}. Since there is no R_{L}, the 3 mA current must all flow through the $3 \mathrm{k} \Omega$ resistance and then divide as it flows through the other resistors. It turns out that the 3 mA flows through R_{Th}, and the voltage arising from the 3 mA is found using Ohm's law. To this voltage, we add the 15 V from the voltage source to get v_{Th}.

$$
v_{\mathrm{Th}}=3 \mathrm{~mA} \cdot 15 \mathrm{k} \Omega+15 \mathrm{~V}=45+15 \mathrm{~V}=60 \mathrm{~V}
$$

Now we use the formula for maximum power transferred:

$$
p_{\max }=\frac{v_{\mathrm{Th}}^{2}}{4 \mathrm{R}_{\mathrm{Th}}}=\frac{60^{2}}{4 \cdot 15 \mathrm{k}} \mathrm{~W}=60 \mathrm{~mW}
$$

10. Using superposition, derive an expression for i that contains no circuit quantities other than $\mathrm{i}_{\mathrm{s}}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}, \alpha$, or V_{s}.

Sol'n: First, we turn off the independent source, $i_{\text {s }}$. This means the current source turns into an open circuit, separating the circuit into two pieces. On the right, we have v_{s} in series with R_{3} and R_{4}.

$$
i_{\mathrm{x} 1}=\frac{v_{\mathrm{s}}}{R_{3}+R_{4}}
$$

On the left side, we have the dependent voltage source (whose voltage is now known) and R_{1} in series with R_{2}.

$$
i_{1}=\frac{\alpha i_{\mathrm{x} 1}}{R_{1}+R_{2}}=\frac{\alpha v_{\mathrm{s}}}{\left(R_{1}+R_{2}\right)\left(R_{3}+R_{4}\right)}
$$

Second, we turn off the independent source, v_{s}. This turns the voltage source into a wire, and we have a current divider for i_{s} flowing through R_{3} parallel R_{4}.

$$
i_{\mathrm{x} 2}=\frac{i_{\mathrm{s}} R_{4}}{R_{3}+R_{4}}
$$

On the left side, the dependent source fixes the voltage across R_{1} and R_{2}. Thus, we have the dependent voltage source (whose voltage is now known) and R_{1} in series with R_{2}, just as we did before.

$$
i_{2}=\frac{\alpha i_{\mathrm{x} 2}}{R_{1}+R_{2}}=\frac{\alpha i_{\mathrm{s}} R_{4}}{\left(R_{1}+R_{2}\right)\left(R_{3}+R_{4}\right)}
$$

We sum the two currents to find the total value of i :

$$
i=i_{1}+i_{2}=\frac{\alpha\left(v_{\mathrm{S}}+i_{s} R_{4}\right)}{\left(R_{1}+R_{2}\right)\left(R_{3}+R_{4}\right)}
$$

