1.

Choose an R , an L , or a C to be placed in the dashed-line box to make

$$
i(t)=I_{0} \cos \left(25 k t+135^{\circ}\right)
$$

where I_{0} is a positive, (ie., nonzero), real constant. State the value of the component you choose.
Hint: Use a Thevenin equivalent.
In the frequency domain, we represent the source with a phasor and use an impedance for the C.

$$
\mathbb{I}_{g}=24 \mathrm{~mA}<90^{\circ}, \quad I=I_{0}<135^{\circ}
$$

$$
\mathbb{I}_{g} R=24 \mathrm{~mA}<90^{\circ}-10 \mathrm{k} \Omega-2^{\prime} 10<90^{\circ} \mathrm{V} \equiv \mathrm{~V}_{g}
$$

$$
z_{c}=\frac{1}{j \omega C}=\frac{-j}{\omega C}=\frac{-j}{25 k \cdot \ln F}=\frac{-j}{25 \mu}
$$

$$
z_{c}=-j 40 \mathrm{k} \Omega
$$

The resultant circuit is a current divider:

$$
I=\frac{I_{g} \cdot 10 k}{10 k-j 40 k+Z_{b o x}}=\frac{24 m \cdot 10 k \cdot e^{j 90^{\circ}}}{10 k-j 40 k+Z_{b o x}}
$$

The desired output is:
$I=I_{o} e^{j 135^{\circ}}$
In order for the above two equations to match, their angles need to match:

$$
I=\frac{\angle\left(24 m \cdot 10 k \cdot e^{j 90^{\circ}}\right)}{\angle\left(10 k-j 40 k+Z_{b o x}\right)}=\angle I_{o} e^{j 135^{\circ}}
$$

$\frac{\angle 90^{\circ}}{\angle\left(10 k-j 40 k+Z_{b o x}\right)}=\angle 135^{\circ} \quad$ In order for this equation to be satisfied, the angle on the

$$
\text { bottom has to equal } \frac{\angle 90^{\circ}}{\angle 135^{\circ}}=\angle\left(90^{\circ}-135^{\circ}\right)=\angle-45^{\circ}
$$

To achieve -45 degrees, the bottom has to have the real $=$-imaginary so that $\tan -1(-1)=-45$
If an R,
$10 k+R=40 k$ so $R=30 k$. This is a valid value.
If an L ,
$10 \mathrm{k}=(40 \mathrm{k}-25 \mathrm{~kL})=>\mathrm{L}=(40 \mathrm{k}-10 \mathrm{k}) / 25 \mathrm{k}=1.2 \mathrm{H}$ which is a valid value but large.
Therefore, an $\mathrm{R}=\mathbf{3 0 k}$ or $\mathrm{L}=\mathbf{1 . 2} \mathbf{H}$ will work to achieve the desired value.
2. With your component from problem 1 in the circuit, calculate the resulting value of I_{0}.

$$
I_{0}=|I|=\left|V_{g} / z_{\text {tot }}\right|=\left|V_{g}\right| /\left|z_{\text {tat }}\right|
$$

For $R=30 k \Omega, \quad I_{0}=240 \mathrm{~V} / 140 \mathrm{k}-j 40 \mathrm{k} \Omega \left\lvert\,=\frac{240 \mathrm{~A}}{\sqrt{2} \cdot 40 \mathrm{k}} 3 \sqrt{2} \mathrm{~mA}\right.$.
For $\left.L=1.2 \mathrm{H}, I_{0}=240 \mathrm{~V} / 10 \mathrm{k}-j 10 \mathrm{k} \cdot \Omega\right)=\frac{240 \mathrm{~A}}{\sqrt{2}-10 \mathrm{~K}}=12 \sqrt{2} \mathrm{~mA}$.
3.

Choose an R, an L, or a C to be placed in the dashed-line box to make

$$
i(t)=I_{0} \cos \left(1 M t-120^{\circ}\right)
$$

where I_{o} is a positive, (i.e., nonzero and non-negative), real constant. State the value of the component you choose.

The phasor for the current source becomes: $I_{g}=6 e^{j-90^{\circ}}$ \{Note the -90 because $\left.\cos (\mathrm{xt}-90)=\sin (\mathrm{xt})\right\}$
And the desired phasor becomes: $I=I_{o} e^{j\left(-120^{\circ}\right)}$
An equation can be written for the desired phasor by observing that it is a current divider:
$I=\frac{I_{g} \cdot 4}{4+Z_{b o x}}=\frac{6 \cdot 4 \cdot e^{j-90^{\circ}}}{4+Z_{b o x}}$

In order for the above two equations to match, their angles need to match:

$$
I=\frac{\angle\left(24 e^{j-90^{\circ}}\right)}{\angle\left(4+Z_{b o x}\right)}=\angle I_{o} e^{-j 120^{\circ}} \quad \frac{\angle-90^{\circ}}{\angle\left(4+Z_{b o x}\right)}=\angle-120^{\circ} \quad \text { In order for this }
$$

equation to be satisfied, the angle on the bottom has to equal $\frac{\angle-90^{\circ}}{\angle-120^{\circ}}=\angle\left(-90^{\circ}+120^{\circ}\right)=\angle+30^{\circ}$
To get the bottom to equal +30 degrees the Zbox needs to be an inductor because a R will only result in an angle of 0 ; a capacitor will only result in angles (because of the -) between 0 and -90 (not a +angle):

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{1 \times 10^{6} L}{4}\right)=30^{\circ} \\
& \frac{1 \times 10^{6} L}{4}=\tan \left(30^{\circ}\right) \\
& L=\frac{\tan \left(30^{\circ}\right) \cdot 4}{1 \times 10^{6}}=2.3 \mu H
\end{aligned}
$$

4. With your component from problem 3 in the circuit, calculate the resulting value of I_{0}.

$$
I=\frac{24 \cdot e^{j-90^{\circ}}}{4+j\left(1 \times 10^{6}\right) \cdot 2.3 \times 10^{-6}}=\frac{24 \cdot e^{j-90^{\circ}}}{4.6 \cdot e^{j 30^{\circ}}}=5.2 \cdot e^{j-120^{\circ}}
$$

So $\mathrm{lo}=5.2 \mathrm{~A}$
5.

Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for $i_{s}(t)$, and show numerical impedance values for R, L, and C . Label the dependent source appropriately.
\backslash
a) $I_{s}=4 \mathrm{~mA} \angle 0^{\circ} \quad \omega=20 \mathrm{Mr} / \mathrm{s}$ from $i_{s}(t)$

$z_{c}=-j 2 k \Omega$
$z_{L}=j \omega L=j 20 \mathrm{M} \cdot 300 \mu H=j 6 \mathrm{k} \Omega$
$\mathbb{I}_{5}=\left(\uparrow 2.5 \mathrm{k} \Omega=0^{+}\right.$
6. Find the Thevenin equivalent (in the frequency domain) for the circuit from Problem 6. Give the numerical phasor value for \mathbf{V}_{Th} and the numerical impedance value of z_{Th}.

$$
\begin{aligned}
& \text { We can replace the dependent source } \\
& \text { with an equivalent impedance since the } \\
& \text { voltage drop across the dependent source } \\
& z_{e q}=\frac{V_{x}}{\frac{2 V_{x}}{3 \mathrm{k}}}=\frac{3 \mathrm{k} \Omega}{2}=1.5 \mathrm{k} \Omega \\
& \text { Note: We are using Ohms law: } z=\frac{V}{I} \text {. } \\
& \text { Note: This equivalent impedance is } \\
& \text { wald regardless of what is } \\
& \text { connected from } a \text { to } b \text {. } \\
& \text { We may combine } 7.5 \mathrm{k} \Omega \text { and } z_{\text {eg }}=1.5 \mathrm{k} \Omega \\
& \text { in parallel. } \\
& \text { 7. } 5 \mathrm{k} \Omega\|1.5 \mathrm{k} \Omega=1.5 \mathrm{k} \Omega \cdot 5\| 1 \\
& =1.5 k \Omega \cdot \frac{5}{6}=1.25 k \sqrt{2}
\end{aligned}
$$

Now we combine the z_{C} and z_{L} in parallel.

$$
z_{C} \| z_{L}=j 2 k \cdot(-1 \| 3)=j 2 k\left(\frac{-3}{2}\right)=-j 3 k \Omega
$$

$$
V_{T h}=V_{a, b \text { no lead }}
$$

Since no current can flow thru the $-j 3 k \Omega$ owing to the lack of a complete circuit, I_{s} must flow thru the $1.25 \mathrm{k} \Omega$ and the voltage drop across the $-j 3 k \Omega$ must be zero.

$$
\therefore V_{T h}=\mathbb{I}_{S} * 1.25 \mathrm{k} \Omega
$$

$n=4 \mathrm{~mA} \angle 0^{\circ} \cdot 1.25 \mathrm{k} \Omega$

$$
V_{T h}=5 V \angle 0^{\circ}
$$

To find $z_{T h}$, we turn off I_{s}, which becomes an open circuit), and look into the circuit from the a, b terminals.
$z_{T h}=1.25 \mathrm{k} \Omega+-j 3 k \Omega$

7.

Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for $i_{S}(t)$, and show numerical impedance values for R, L, and C. Label the dependent source appropriately.

8. Find the Thevenin equivalent (in the frequency domain) for the circuit from Problem 8. Give the numerical phasor value for \mathbf{V}_{Th} and the numerical impedance value of Z_{Th}.

Using node-voltage with V_{1} at the node above the current source. Vth is the open circuit voltage between a-b:
$-5 e^{j 90^{\circ}}+\frac{V_{1}}{-j 200}+\frac{V_{1}-v_{x}}{j 100+100}=0$
$v_{x}=V_{1}$
$-5 e^{j 90^{\circ}}+\frac{V_{1}}{-j 200}+0=0$
$V_{1}=-j 200(5 j)=1 k V$
$V_{T h}=V_{1}=1 \mathrm{kV}$

To find Z_{Th} short a-b and label it Isc. The new circuit becomes a current divider:
$I_{2}=\frac{5 e^{j 90^{\circ}} \cdot(-j 200)}{-j 200+j 100}=\frac{-j 200 \cdot 5 e^{j 90^{\circ}}}{-j 100}=10 e^{j 90^{\circ}}=10 j$
$I_{1}=\frac{v_{x}}{100}=\frac{10 j \cdot j 100}{100}=-10$
$I_{S C}=I_{1}+I_{2}=-10+j 10=10 \cdot \sqrt{2} e^{j 135^{\circ}}$
$Z_{T h}=\frac{V_{T h}}{I_{S C}}=\frac{1 k}{10 \cdot \sqrt{2} e^{j 45^{\circ}}}=70 e^{-j 135^{\circ}}$

9.

a) Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for $\mathrm{V}_{\mathrm{S}}(\mathrm{t})$, and show numerical impedance values for R, L, and C . Label the dependent source appropriately.

b) Find the Thevenin equivalent (in the frequency domain) for the above circuit. Give the numerical phasor value for V_{Th} and the numerical impedance value of z_{Th}.

$$
\begin{gathered}
\text { b. Using node }-V: \frac{V_{T h}}{-1000 j}+\frac{j}{10 k} V_{T h}+\frac{V_{T h}}{1666.7 j}+\frac{\left(V_{T h}-4 \sqrt{2} e^{j 45^{\circ}}\right)}{2 k}=0 \\
V_{T h}\left(\frac{j}{1000}+\frac{j}{10 k}+\frac{-j}{1666.7}+\frac{1}{2 k}\right)=\frac{4 \sqrt{2} e^{j}}{2 k} \\
V_{T h}\left((l m+0.1 m-.6 m) j+0.5 m y 5^{\circ}=4 \sqrt{2} e^{j 45^{\circ} / 2 k}\right. \\
V_{T h}(0.5 m(j+1))=\frac{4 \sqrt{2} e^{j 45^{\circ}}}{\left.2 k(0.5 m \sqrt{2}) e^{j 45^{\circ}}\right)}=4 V
\end{gathered}
$$

10.

a. Choose an R, an L, or a C to be placed in the dashed-line box to make

$$
i(t)=I_{0} \cos \left(100 t-240^{\circ}\right)
$$

where I_{0} is a positive real constant (with units of Amps). State the value of the component you choose.
b. Calculate the resulting value of I_{o}.

$$
\begin{aligned}
& i_{5}(t)=20 \sin (100 t) \quad \mathrm{m} A \\
& =20 \cos \left(100 t-90^{\circ}\right) \sim n A \\
& P(\text { is }(t))=20<-90^{\circ} \mathrm{m} A \\
& P(i(b))=I_{0}<-240 \\
& \text { using current divider } \\
& I=\text { Is } \frac{z_{c}}{26+1 k 5+2} \\
& z_{c}=\frac{-j}{w C}=\frac{-j}{100 \times 10 \mu}=-1 k j \\
& \text { To find out if it is } R, L \text {,nc we weed to } \\
& \text { find the phase first } \\
& \angle-240^{\circ}=\angle-90^{\circ} \times \angle-90^{\circ} \\
& <(-1 k j+1 k j+2) \\
& \left\langle(2+1 k(1-j))=\left(-90^{\circ}\right)+\left(-90^{\circ}\right)+240\right. \\
& =60^{\circ} \\
& \text { space the final phase is positive the } \\
& \text { compo went in the box must contain } L \text {, we } \\
& \text { can hus ait to be } L
\end{aligned}
$$

Need to get a phase of 60° from the following quantity \Rightarrow

$$
(1,000-1,000 j+z)
$$

If $z=R \quad$ then $\left[\right.$ This is just $\left.\frac{\text { Imaginary }}{\text { Real }}\right]$

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{-1,000^{\circ}}{1,000+R}\right)=60^{\circ} \\
& 1, \frac{-1,000}{}=\tan 60^{\circ} \\
& R=-\frac{1,000}{\tan \left(60^{\circ}\right)}-1,000=--55 \mathrm{I7}
\end{aligned}
$$

\therefore No! R can not be negative! (NotAN R)
If $z=C$ then

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{-1,000-\frac{1}{100 . C}}{1,000}\right)=60^{\circ} \\
& -\frac{1}{100 \cdot \mathrm{C}}=\tan \left(60^{\circ}\right)+1,000+1,000 \\
& \therefore \quad C=-\frac{1}{100(2732)}=-3.60 \mu \mathrm{~F}
\end{aligned}
$$

No! 1 can not be a negative value! (NOTAC)
If $z=L$ then $\tan ^{-1}\left(\frac{-1,000+1001(L)}{1,000}\right)=60^{\circ}$

$$
L=\frac{\left(\tan 60^{\circ}\right)(1000)+1,000}{100}=27.32 \mathrm{H}
$$

3) $I=\Pi_{s} \frac{2 c}{z_{i}+Z_{i+1}}$
using mag nitude only

$$
I_{0}=20+\frac{1 k}{2 k}=10 \mathrm{~mA}
$$

