

1

The above circuit operates in linear mode. Derive a symbolic expression for v_0 . The expression must contain not more than the parameters i_{s1} , i_{s2} , R_1 , R_2 , R_3 , and R_4 .

2.

If $i_{s1} = 10 \,\mu\text{A}$ and $i_{s2} = 0 \,\mu\text{A}$, find the value of $R_2 = R_4$ that will yield an output voltage of $v_0 = 1 \,\text{V}$.

3.

Write a formula for the circuit's input resistance, R_{in} , as seen by source i_{s2} . In other words, write a formula for voltage, v_2 , across i_{s2} divided by i_{s2} :

$$R_{\rm in} = \frac{v_2}{i_{s2}}$$

Write R_{in} in terms of not more (and possibly less) than R_1 , R_2 , R_3 , and R_4 .

4

Find the Thevenin equivalent of the above circuit relative to terminals a and b.

- 5. a) If we attach $R_{\rm L}$ to terminals a and b, find the value of $R_{\rm L}$ that will absorb maximum power.
- Calculate the value of that maximum power absorbed by $R_{\rm L}$.

Summer 2009