

Calculate i1.

Calculate v1.

3. Find the value of total resistance between terminals a and b.

4.

Derive an expression for v_1 . The expression must not contain more than the circuit parameters i_a , v_a , R_1 , and R_2 .

5. Derive an expression using the circuit in Problem #4 above for the power through R2 resistor. The known values are i_a , V_a , R_1 , and R_2 .

6.

) Derive the expression for V_1 containing not more than circuit parameters $\alpha,\,R_1,\,R_2,\,R_3,\,V_a,\,and\,i_a.$

7. Using the circuit shown in Problem #6, derive an expression for the power through R2. The known values are α , i_a , V_a , R_1 , R_2 and R_3 .

Derive an expression for i_3 . The expression must not contain more than the circuit parameters α , v_a , R_1 , R_2 , and R_3 . Note: $\alpha > 0$.

9.

8.

The op-amp operates in the linear mode. Using an appropriate model of the opamp, derive an expression for v_0 in terms of not more than i_a , v_a , R_1 , and R_2 .

10.

The op-amp operates in the linear mode. Using an appropriate model of the opamp, derive an expression for V_0 in terms of not more than i_a , R_1 , R_2 , R_3 , and V_a .

3