1.

Calculate i_{1}.
2.

Calculate \mathbf{v}_{1}.
3. Find the value of total resistance between terminals \mathbf{a} and \mathbf{b}.

4.

1 Derive an expression for v_{1}. The expression must not contain more than the circuit parameters $i_{\mathrm{a}}, v_{\mathrm{d}}, R_{1}$, and R_{2}.
5. Derive an expression using the circuit in Problem \#4 above for the power through R2 resistor. The known values are $i_{a}, V_{\mathrm{a}}, \mathrm{R}_{1}$, and R_{2}.
6.

I Derive the expression for $\mathrm{V}_{\|}$containing not more than circuit parameters $\alpha, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{~V}_{\mathrm{a}}$, and i_{a}.
7. Using the circuit shown in Problem \#6, derive an expression for the power through R2. The known values are $\alpha, i_{a}, V_{a}, R_{1}, R_{2}$ and R_{3}.
8.

Derive an expression for i_{3}. The expression must not contain more than the circuit parameters $\alpha, v_{\mathrm{a}}, R_{1}, R_{2}$, and R_{3}. Note: $\alpha>0$.
9.

The op-amp operates in the linear mode. Using an appropriate model of the opamp, derive an expression for v_{Q} in terms of not more than $i_{\mathrm{d}}, v_{\mathrm{a}}, R_{1}$, and R_{2}.
10.

The op-amp operates in the linear mode. Using an appropriate model of the opamp, derive an expression for V_{o} in terms of not more than $\mathrm{i}_{\mathrm{a}}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$, and V_{a}.

