UNIVERSITY OF UTAH
 ELECTRICAL \& COMPUTER ENGINEERING DEPARTMENT

HOMEWORK \#5

1. In a-c, the voltage $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$ across a 5 nF capacitor is listed. Find the current, $\mathrm{i}_{\mathrm{C}}(\mathrm{t})$, flowing in the capacitor in each case as a function of time:

(a) $\quad v_{C}(t)=8 \mathrm{~V}$
(b) $\quad v_{C}(t)=25 t \mathrm{kV} / \mathrm{sec}$
(c) $\quad \mathrm{v}_{\mathrm{C}}(\mathrm{t})=5 \mathrm{k} \cos (2 \pi \cdot 20 \cdot \mathrm{t}) \mathrm{V}$
2. In $\mathrm{a}-\mathrm{c}$, the current $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ flowing into a $3 \mu \mathrm{H}$ inductor is listed. Find the voltage, $\mathrm{v}_{\mathrm{L}}(\mathrm{t})$, across the inductor in each case as a function of time.
$L\left\{\begin{array}{l}\left\{i_{L}(t)\right. \\ + \\ v_{L}(t)\end{array}\right.$
(a) $\mathrm{i}_{\mathrm{L}}(\mathrm{t})=29 \mathrm{nA}$
(b) $\mathrm{i}_{\mathrm{L}}(\mathrm{t})=35 \mathrm{t} \mu \mathrm{A}$
(c) $\quad \mathrm{i}_{\mathrm{L}}(\mathrm{t})=2-0.2 \mathrm{e}^{-\mathrm{t} / 2 \mathrm{msec}} \mathrm{A}$
3. The following equation describes the voltage, v_{C}, across a capacitor as a function of time. Find the time, t , at which v_{C} is equal to -6 V . Plot $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$. You may use Matlab.

$$
v_{C}(t)=6-6\left(1-e^{-t / 10 \mu s}\right) V
$$

4. The following equation describes the voltage, v_{L}, across an inductor as a function of time. Find an expression for the current, $i_{L}(t)$, through the inductor as a function of time. Assume that $i_{L}(t=0)=0 A$. Plot $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$. You may use Matlab.

$$
v_{L}(t)=2 e^{-t / 20 m s} V
$$

5. Find the voltage, v_{C}, on the capacitor in the circuit below as a function of time if the initial condition is $\mathrm{v}_{\mathrm{C}}\left(\mathrm{t}=0^{+}\right)=2 \mathrm{~V}$.

6. Find the current, i_{L}, through the inductor in the circuit below for $t>0$ if $i_{L}(t=0)=13 \mathrm{~mA}$.

7. Find the voltage, v_{C}, across the capacitor in the circuit below for $t>0$ if $v_{C}(t=0)=5 V$.

8. After being open for a long time, the switch closes at $t=0$.
(a) Find an expression for $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$ for $\mathrm{t} \geq 0$.

(a) Find an expression for $i_{L}(t)$ for $t \geq 0$. Note: Assume the initial current in the L is created by circuitry not shown in the diagram.
(b) Find the energy stored in the inductor at time $\mathrm{t}=1 \mathrm{~ms}$.
9. The switch has been in a position a for a long time. It is switched to position b at $\mathrm{t}=0$.

(a) Find an expression for $V_{c}(t)$ for $t>0$.
(b) Find the current, i_{R}, in R as a function of time.
