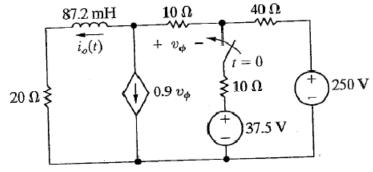
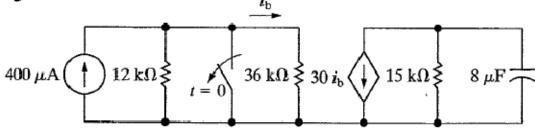
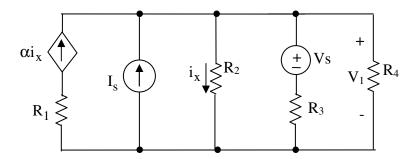
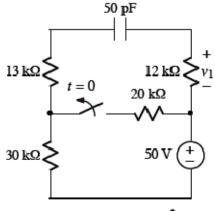

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT

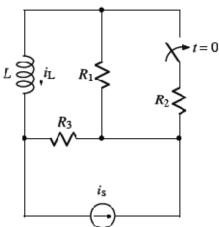
ECE 1270 **HOMEWORK #6** Summer 2010


1. After being closed a long time, the switch opens at t = 0. Find $v_o(t)$ or t > 0.

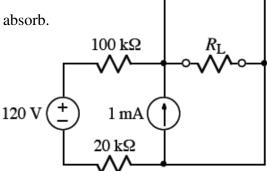

2. After being open for a long time, the switch closes at t = 0. Find $i_1(t)$ and $i_2(t)$ for t > 0.

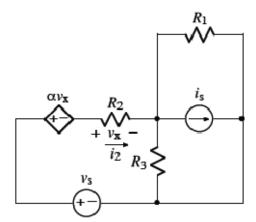

3. After being open for a long time, the switch closes at t = 0. Find $v_{\phi}(t)$ for t > 0.


4. After being closed for a long time, the switch opens at t = 0. Find $i_b(t)$ for t > 0.


5. Using superposition, derive an expression for V_1 that contains no circuit quantities other than $i_s, R_1, R_2, R_3, R_4, \alpha, \text{ or } V_s$.

- 6. After being closed for a long time, the switch opens at t=0.
 - a) Calculate the energy stored on the capacitor as $t \rightarrow \infty$.
 - b) Write a numerical expression for $v_l(t)$ for t> 0.


- 7. After being open for a long time, the switch closes at t=0.
 - a) Write an expression for $i_L(t=0^+)$.
 - b) Write an expression for i_L (t>0) in terms of i_s , R_1 , R_2 , R_3 , and L.


130 kΩ

Use the circuit at the right for both problem 8 and 9.

- 8. Calculate the value of R_L that would absorb maximum power.
- 9. Calculate that value of maximum power R_L could absorb.

10. Using superposition, derive an expression for i_2 that contains no circuit quantities other than $i_s, R_1, R_2, R_3, \alpha$, or V_s .

