1. 



Choose an $R$, an $L$, or a $C$ to be placed in the dashed-line box to make $v(t)=V_{o} \cos \left(1 k t-45^{\circ}\right)$ where $I_{0}$ is a positive, (i.e., nonzero), real constant. State the value of the component you choose.
2. With your component from problem 1 in the circuit, calculate the resulting value of $I_{0}$.
3.


Choose an $R$, an $L$, or a $C$ to be placed in the dashed-line box to make $i(t)=I_{0} \cos \left(10 t+45^{\circ}\right) A$ where $I_{0}$ is a real constant. State the value of the component you choose.
4. With your component from problem 3 in the circuit, calculate the resulting value of $I_{0}$.
5.


Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for $i_{S}(t)$, and show numerical impedance values for $R, L$, and $C$. Label the dependent source appropriately.
6. Find the Thevenin equivalent (in the frequency domain) for the circuit from Problem 6. Give the numerical phasor value for $\mathbf{V}_{\mathrm{Th}}$ and the numerical impedance value of $\mathrm{z}_{\mathrm{Th}}$.
7.


Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for $i_{S}(t)$, and show numerical impedance values for $R, L$, and $C$. Label the dependent source appropriately.
8. Find the Thevenin equivalent (in the frequency domain) for the circuit from Problem 8. Give the numerical phasor value for $\mathbf{V}_{\mathrm{Th}}$ and the numerical impedance value of $\mathrm{Z}_{\mathrm{Th}}$.
9.

a) Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for $i_{S}(t)$, and show numerical impedance values for $\mathrm{R}, \mathrm{L}$, and C . Label the dependent source appropriately.
b) Find the Thevenin equivalent (in the frequency domain) for the above circuit. Give the numerical phasor value for $\mathrm{V}_{\mathrm{Th}}$ and the numerical impedance value of $\mathrm{z}_{\mathrm{Th}}$.
10.

a. Choose an $R$, an $L$, or a $C$ to be placed in the dashed-line box to make

$$
i(t)=\mathrm{I}_{\mathrm{O}} \cos \left(40 \mathrm{k} t-45^{\circ}\right)
$$

where $\mathrm{I}_{\mathrm{O}}$ is a positive, (i.e., nonzero and non-negative), real constant with units of Amps. State the value of the component you choose.
b. Calculate the resulting value of $\mathrm{I}_{\mathrm{o}}$.

