(Each problem is worth double points)

1.

The above circuit operates in linear mode. Derive a symbolic expression for v_{0}. The expression must contain not more than the parameters $v_{\mathrm{s} 1}, v_{\mathrm{s} 2}, R_{1}, R_{2}, R_{3}, R_{4}$, and R_{5}.
2. Using the solution for Problem 1: if $v_{\mathrm{s} 1}=0 \mathrm{~V}$ and $v_{\mathrm{s} 2}=1 \mathrm{~V}$, find the value of R_{5} that will yield an output voltage of $v_{\mathrm{o}}=1 \mathrm{~V}$.
3. Using the circuit in Problem 1: Find the numerical value of the circuit's input resistance, R_{in}, as seen by source $v_{\mathrm{s} 2}$. In other words, write a formula for voltage, $v_{\mathrm{s} 2}$, divided by i_{2} :

$$
R_{\mathrm{in}} \equiv \frac{v_{s 2}}{i_{2}}
$$

Write $R_{\text {in }}$ in terms of not more (and possibly less) than $R_{1}, R_{2}, R_{3}, R_{4}$, and R_{5}.
4.

Rail Voltages $= \pm 9$
After being at \mathbf{c} for a long time, the switch moves to \mathbf{d} at time $t=t_{\mathrm{o}}$.

a) Choose either an R or C to go in box \mathbf{a} and either an R or C to go in box \mathbf{b} to produce the $v_{\mathrm{o}}(\mathrm{t})$ shown above. Use at least one R, and use $2 \mathrm{k} \Omega$ for the R value or values. Also, note that v_{O} stays low forever after $\mathrm{t}_{\mathrm{o}}+25 \mu \mathrm{~s}$. Specify which element goes in each box and its value.
5. Sketch $v_{1}(t)$, showing numerical values appropriately.
6. Sketch $v_{2}(t)$, showing numerical values appropriately.
7. Sketch $v_{3}(t)$. Show numerical values for $t<t_{\mathrm{o}}$, for $t_{\mathrm{o}}<t<t_{\mathrm{o}}+25 \mu \mathrm{~s}$, and for $t>t_{\mathrm{O}}+25 \mu \mathrm{~s}$. Use the ideal model of the diode: when forward biased, its resistance is zero, (a wire); when reverse biased, its resistance is infinite, (an open).
8.

A frequency-domain circuit is shown above. Write the value of phasor current \mathbf{I}_{1} in rectangular form.
9. Given $\omega=25 \mathrm{krad} / \mathrm{s}$, write a numerical time-domain expression for $i_{1}(t)$, the inverse phasor of \mathbf{I}_{1}.
10.

(a) If we attach R_{L} to terminals \mathbf{a} and \mathbf{b}, find the value of R_{L} that will absorb maximum power.
(b) Calculate the value of that maximum power absorbed by R_{L}.

