

(Each problem is worth double points)

The above circuit operates in linear mode. Derive a symbolic expression for v_0 . The expression must contain not more than the parameters v_{s1} , v_{s2} , R_1 , R_2 , R_3 , R_4 , and R_5 .

- 2. Using the solution for Problem 1: if $v_{s1} = 0$ V and $v_{s2} = 1$ V, find the value of R_5 that will yield an output voltage of $v_0 = 1$ V.
- 3. Using the circuit in Problem 1: Find the numerical value of the circuit's input resistance, R_{in} , as seen by source v_{s2} . In other words, write a formula for voltage, v_{s2} , divided by i_2 :

$$R_{\rm in} \equiv \frac{v_{s2}}{i_2}$$

Write R_{in} in terms of not more (and possibly less) than R_1 , R_2 , R_3 , R_4 , and R_5 .

4.

Rail Voltages=±9

After being at **c** for a long time, the switch moves to **d** at time $t = t_0$.

- a) Choose either an *R* or *C* to go in box **a** and either an *R* or *C* to go in box **b** to produce the $v_0(t)$ shown above. Use at least one *R*, and use $2 k\Omega$ for the *R* value or values. Also, note that v_0 stays low forever after $t_0 + 25 \mu s$. Specify which element goes in each box and its value.
- 5. Sketch $v_1(t)$, showing numerical values appropriately.
- 6. Sketch $v_2(t)$, showing numerical values appropriately.
- 7. Sketch $v_3(t)$. Show numerical values for $t < t_0$, for $t_0 < t < t_0 + 25 \ \mu s$, and for $t > t_0 + 25 \ \mu s$. Use the ideal model of the diode: when forward biased, its resistance is zero, (a wire); when reverse biased, its resistance is infinite, (an open).

8.

 $-j6 \Omega$ $-v_{\overline{x}}$ $1 k\Omega$ $+ v_{\overline{x}}$ -j24 V $+ 2 k\Omega$ j3 A

A frequency-domain circuit is shown above. Write the value of phasor current I_1 in rectangular form.

9. Given $\omega = 25$ k rad/s, write a numerical time-domain expression for $i_1(t)$, the inverse phasor of I_1 .

10.

(a) If we attach $R_{\rm L}$ to terminals **a** and **b**, find the value of $R_{\rm L}$ that will absorb maximum power.

(b) Calculate the value of that maximum power absorbed by $R_{\rm L}$.