1. Solve the following simultaneous equations for i_{1}, i_{2}, and i_{3} :

$$
\begin{gathered}
5\left(i_{1}+i_{2}\right)+\left(2 i_{2}-i_{3}-4 i_{3}\right)-20=0 \\
-3\left(i_{1}+i_{2}\right)+2\left(3 i_{3}\right)=0 \\
-5+i_{1}-2 i_{2}=0
\end{gathered}
$$

2. Perform the following calculations. Write the answers with appropriate prefixes (such as μ, m, k etc.) for engineering intis:
a) $\mathrm{P}=5 \mu \mathrm{~A} \times 6 \mathrm{GV}\left(\right.$ Note: $\left.\mathrm{V}^{*} \mathrm{~A}=\mathrm{W}\right)$
b) $\mathrm{R}=5.1 \mathrm{k} \Omega+160 \Omega$
3. Determine whether each of the following circuits is valid or invalid.

4. Use Kirchoff's laws and Ohm's Law to find the value of Vc. Note that it is also the voltage across the 2A current source.

5. Use Kirchoff's laws and Ohm's Law to find the current through the 5Ω resistor. The current source is not ideal and so will have a voltage drop across it.

6. Use Kirchoff's laws and Ohm's Law to find I_{2} and V_{4} in the circuit below.

7. Use Kirchoff's laws and Ohm's Law to find the expression for V_{1}. The expression can contain no other parameters than $V_{a}, i_{a}, R_{1}, R_{2}$, and/or R_{3}.

8. Use Kirchoff's laws and Ohm's Law to find the expression for i_{1}. The expression can contain no other parameters than $\mathrm{i}_{\mathrm{a}}, \alpha, \mathrm{R}_{1}$, and/or R_{2}. (Hint: Eliminate V_{1} from the expression)

9. (a) Find i_{1}, i_{2}, i_{3}, and v_{0}.
(b) Find the power dissipated in the 24Ω resistor and the power supply.

10. Find i_{1}, i_{2}, i_{3}, and v_{0}.

