1.

Calculate i_{1}.
2.

Calculate V_{1}.
3. Find the total resistance between terminals \mathbf{a} and \mathbf{b}.

4. Derive an expression for i_{1} in the circuit below containing not more than circuit parameters R1, R2, R3, Vs, and/or is.

5.

| Derive the expression for V_{11} containing not more than circuit parameters $\alpha, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{~V}_{\mathrm{a}}$, and i_{a}.
6. Using the circuit shown in Problem \#5, derive an expression for the power through R2. The known values are $\alpha, i_{a}, V_{a}, R_{1}, R_{2}$ and R_{3}.
7. The op-amp operates in the linear mode. Using an appropriate model of the op amp, derive an expression for V_{o} in terms of not more than $\mathrm{V}_{\mathrm{s}}, \mathrm{i}_{\mathrm{s}}, \mathrm{R}_{1}$, and/or R_{2}. Note that the current source is not ideal and has a voltage drop across it.

8. The op-amp operates in the linear mode. Using an appropriate model of the op amp, derive an expression for V_{o} in terms of not more than $\mathrm{V}_{\mathrm{a}}, \mathrm{V}_{5}, \mathrm{i}_{\mathrm{s}}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}$ and R_{5}. Note that the current source is not ideal and has a voltage drop across it.

9. The op-amp operates in the linear mode. Using an appropriate model of the op-amp, derive an expression for Vo in terms of not more than $\mathrm{i}_{\mathrm{a}}, \mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3$, and/or Va. Note that the current source is not ideal and has a voltage drop across it.

10. The op-amp operates in the linear mode. Using an appropriate model of the op-amp, derive an expression for Vo in terms of not more than $\mathrm{i}_{\mathrm{a}}, \mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3$, and/or Va. Note that the current source is not ideal and has a voltage drop across it. (updated figure)

