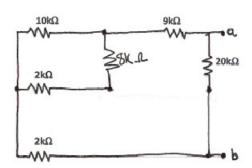
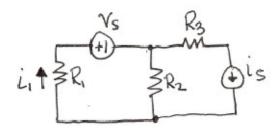


1

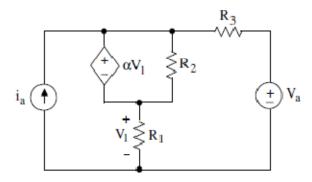

Calculate i₁.

2.

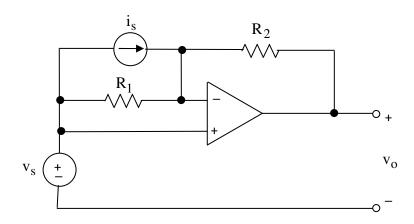


Calculate V₁.

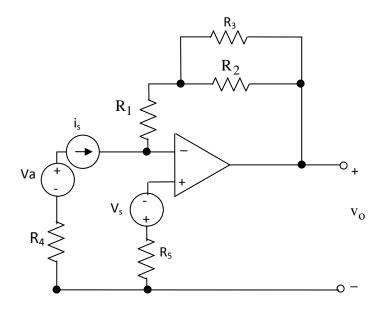
3. Find the total resistance between terminals **a** and **b**.



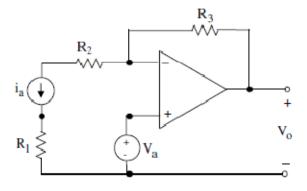
4. Derive an expression for i_1 in the circuit below containing not more than circuit parameters R1, R2, R3, Vs, and/or is.



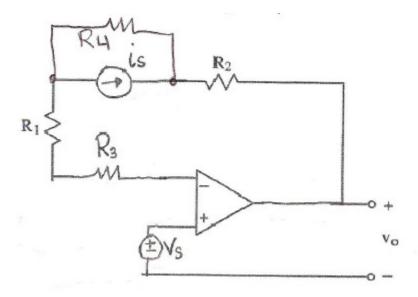
5



-) Derive the expression for V_1 containing not more than circuit parameters α , R_1 , R_2 , R_3 , V_a , and i_a .
- 6. Using the circuit shown in Problem #5, derive an expression for the power through R2. The known values are α , i_a , V_a , R_1 , R_2 and R_3 .
- 7. The op-amp operates in the linear mode. Using an appropriate model of the op amp, derive an expression for v_0 in terms of not more than V_s , i_s , R_1 ,and/or R_2 . Note that the current source is **not** ideal and has a voltage drop across it.



8. The op-amp operates in the linear mode. Using an appropriate model of the op amp, derive an expression for v_0 in terms of not more than V_a , V_s , i_s , R_1 , R_2 , R_3 , R_4 and R_5 . Note that the current source is **not** ideal and has a voltage drop across it.


9. The op-amp operates in the linear mode. Using an appropriate model of the op-amp, derive an expression for Vo in terms of not more than i_a, R1, R2, R3, and/or Va. Note that the current source is **not** ideal and has a voltage drop across it.

Summer 2010 3

10. The op-amp operates in the linear mode. Using an appropriate model of the op-amp, derive an expression for Vo in terms of not more than i_a, R1, R2, R3, and/or Va. Note that the current source is **not** ideal and has a voltage drop across it. (updated figure)

Summer 2010 4