Homework #4

1. Find the Thevenin equivalent circuit between terminals a-b.

Summer 2009

2. Find the Thevenin equivalent circuit between terminals a-b.

Summer 2009

3. Determine the Thevenin equivalent circuit between terminals a-b.

Summer 2009

4. For the circuit shown, write three independent equations for the node voltages v_1 , v_2 , and v_3 .

The quantity V_x must not appear in the equations.

- 5. Solve the equations in Problem 4 to find $\,v_1^{}$, $\,v_2^{}$, and $\,v_3^{}$
- 6. From Problem 4, calculate the power in the dependent source. State whether it is consuming or producing power.

$$\begin{array}{c} \textcircledlength{\textcircledlength{\textcircledlength{\mathbb{O}\mat$$

#6 power is
$$dV_x(-V_3)$$

 $V_x = -V_s$
 $power = d(-V_s)[i_sR_3 + \frac{V_sR_3}{R_2} - i_sR_2 - dV_sR_2]$
if $[i_sR_3 + \frac{V_sR_3}{R_2} - i_sR_2 - dV_sR_2] > 0$ then it is producing
 R_2

if $[i_{R_2} + \frac{V_{SR_3}}{R_2} - i_{SR_2} - \alpha V_{SR_2}] < 0$ then it is consuming

- 7. For the circuit shown, write three independent equations for the three mesh currents, i_1 , i_2 , and
 - i_{3} . The quantity $i_{\textbf{x}}$ must not appear in the equations.

8. Solve the equations in Problem 7 to find i_1 , i_2 , and i_3 .

#8. (conf.)

$$\dot{L}_{1} = \frac{V_{s}}{(R_{1}+R_{2})^{+}} + \frac{R_{2}}{(R_{1}+R_{2})} + \frac{1}{(R_{1}+R_{2})^{+}} + \frac{1}{(R_{1}+R_$$