1.

After being open(left circuit) for a long time, the switch closes at $t=0$ (right circuit).
a) Calculate the energy stored on the inductor as $t \rightarrow \infty$.
b) Write a numerical expression for $v_{1}(t)$ for $t>0$.
2.

After being closed(left circuit) for a long time, the switch opens at $t=0$ (right circuit).
a) Write an expression for $v_{\mathrm{C}}\left(t=0^{+}\right)$.
b) Write an expression for $v_{\mathrm{C}}(t>0)$ in terms of no more than $R_{1}, R_{2}, R_{3}, v_{\mathrm{S}}$, and C.
3.

a) Calculate the value of R_{L} that would absorb maximum power.
b) Calculate that value of maximum power R_{L} could absorb.
4.

Using superposition, derive an expression for i_{1} that contains no circuit quantities other than $i_{\mathrm{s}}, v_{\mathrm{s}}, R_{1}, R_{2}$, and α. Note: $\alpha>0$.
5.

After being in position 1 (left circuit) for a long time, the switch moves to position 2 at $t=0$ (right circuit).
a) Write an expression for $v_{\mathrm{C}}(t>0)$ in terms of no more than $R_{1}, R_{2}, V_{\mathrm{s}}, I_{\mathrm{s}}$, and C.
b) Write an expression for the energy stored on the capacitor as $t \rightarrow \infty$ in terms of no more than $R_{1}, R_{2}, V_{\mathrm{s}}, I_{\mathrm{s}}$, and C.
6.

After being closed(left circuit) for a long time, the switch opens at $t=0$ (right circuit).
a) Write an expression for $v_{1}(t>0)$ in terms of no more than $R_{1}, R_{2}, V_{\mathrm{S}}, I_{\mathrm{S}}$, and L.
b) Write an expression for the energy stored on the inductor as $t \rightarrow \infty$ in terms of no more than $R_{1}, R_{2}, V_{\mathrm{s}}, I_{\mathrm{s}}$, and L.
7.

Using superposition, derive a value for i_{1}.
8.

Using superposition, derive an expression for V_{0}.
9.

6Ω
a) Calculate the value of R_{L} that would absorb maximum power.
b) Calculate that value of maximum power R_{L} could absorb.
10.

a) Calculate the value of R_{L} that would absorb maximum power.
b) Calculate that value of maximum power R_{L} could absorb.

