UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT

ECE 1270

1.

2.

HOMEWORK #6

Summer 2011

After being open(left circuit) for a long time, the switch closes at t = 0(right circuit).

a) Calculate the energy stored on the inductor as $t \rightarrow \infty$.

b) Write a numerical expression for $v_1(t)$ for t > 0.

After being closed(left circuit) for a long time, the switch opens at t = 0(right circuit).

- a) Write an expression for $v_{\rm C}(t = 0^+)$.
- b) Write an expression for $v_{\rm C}(t > 0)$ in terms of no more than $R_1, R_2, R_3, v_{\rm s}$, and *C*.

- a) Calculate the value of $R_{\rm L}$ that would absorb maximum power.
- b) Calculate that value of maximum power $R_{\rm L}$ could absorb.

Using superposition, derive an expression for i_1 that contains no circuit quantities other than i_s , v_s , R_1 , R_2 , and α . Note: $\alpha > 0$.

After being in position 1(left circuit) for a long time, the switch moves to position 2 at t=0(right circuit).

- a) Write an expression for $v_{\rm C}(t > 0)$ in terms of no more than R_1, R_2, V_8, I_8 , and C.
- b) Write an expression for the energy stored on the capacitor as $t \rightarrow \infty$ in terms of no more than R_1 , R_2 , V_s , I_s , and C.

6.

After being closed(left circuit) for a long time, the switch opens at t = 0(right circuit).

- a) Write an expression for $v_1(t > 0)$ in terms of no more than R_1 , R_2 , V_s , I_s , and L.
- b) Write an expression for the energy stored on the inductor as $t \rightarrow \infty$ in terms of no more than R_1, R_2, V_s, I_s , and L.

7.

Using superposition, derive a value for i_{1} .

Using superposition, derive an expression for V_0 .

9.

- a) Calculate the value of $R_{\rm L}$ that would absorb maximum power.
- b) Calculate that value of maximum power $R_{\rm L}$ could absorb.

10.

- a) Calculate the value of $R_{\rm L}$ that would absorb maximum power.
- b) Calculate that value of maximum power $R_{\rm L}$ could absorb.