

1.

Give numerical answers to each of the following questions:

- a) Rationalize $\frac{3-j}{1-j2}$. Express your answer in rectangular form, a+jb. Give the numerical values of a and b.
- b) Find the rectangular form of $-j10e^{j90^{\circ}} 7 j3\sqrt{3}$.
- c) Given $\omega = 120 \text{k r/s}$, find the inverse phasor of $\frac{1}{1+j}$.
- d) Find the magnitude of $\frac{e^{-j15^{\circ}}(e^{j15^{\circ}}+4)}{(e^{-j15^{\circ}}+4)}$.
- e) Find the real part of $7 + j3e^{j\pi \cos 60^{\circ}}$.

2.

a) The current source in the above circuit has a value of $i_s(t) = 4\cos(100t)$ A

Choose an R, an L, or a C to be placed in the dashed-line box to make $v(t) = V_0 \cos(100 t - 30^\circ)$

where V_o is a positive, (i.e., nonzero and non-negative), real constant with units of Volts. State the value of the component you choose.

3. With your component from problem 2 in the circuit, calculate the resulting value of Vo.

4.

Choose an R, an L, or a C to be placed in the dashed-line box to make

$$i(t) = I_0 \cos (100t - 45^{\circ})A$$

where I_0 is a real constant. State the value of the component you choose.

b. With your component from part (a) in the circuit, calculate the resulting value of I_o .

5.

- a. Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for $i_s(t)$, and show numerical impedance values for R, L, and C. Label the dependent source appropriately.
- b. Find the Thevenin equivalent (in the frequency domain) for the circuit from Problem 6. Give the numerical phasor value for ${\bf V}_{Th}$ and the numerical impedance value of ${\bf z}_{Th}$.

Summer 2010 2

6.

- a. Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for $v_S(t)$, and show numerical impedance values for R, L, and C. Label the dependent source appropriately.
- b. Find the Thevenin equivalent (in the frequency domain) for the above circuit. Give the numerical phasor value for V_{Th} and the numerical impedance value of z_{Th} .

7.

Construct a frequency-domain Thevenin equivalent circuit with respect to terminals a-b. Note that the L and C have impedances with equal magnitudes but opposite signs. Also, $\mathbf{I}_{\mathbf{x}}$ must <u>not</u> appear in your answer.

8.

$$V_g(t) = 120 \sin (2000 t + 45^\circ) V$$

Choose one R, one L, or one C to be placed in the dashed-line box to make

$$i(t) = 2 \cos (2000 t + 45^{\circ}) A$$
.

State the type and value of the component you choose.

Summer 2010

9

- a) Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for $i_S(t)$, and show numerical impedance values for R, L, and C. Label the dependent source appropriately.
- b) Find the Thevenin equivalent (in the frequency domain) for the above circuit. Give the numerical phasor value for V_{Th} and the numerical impedance value of Z_{Th} .

10.

.

a. Choose an R, an L, or a C to be placed in the dashed-line box to make

$$V(t) = V_{o} \cos(1kt)$$

where V_0 is a positive, (i.e., nonzero and non-negative), real constant with units of Volts. State the value of the component you choose.

b. Calculate the resulting value of V_o .

Summer 2010