1.

Give numerical answers to each of the following questions:
a) Rationalize $\frac{3-j}{1-j 2}$. Express your answer in rectangular form, $a+j b$.

Give the numerical values of a and b.
b) Find the rectangular form of $-j 10 e^{j 90^{\circ}}-7-j 3 \sqrt{3}$.
c) Given $\omega=120 \mathrm{k} \mathrm{r} / \mathrm{s}$, find the inverse phasor of $\frac{1}{1+j}$.
d) Find the magnitude of $\frac{e^{-j 15^{\circ}}\left(e^{j 15^{\circ}}+4\right)}{\left(e^{-j 15^{\circ}}+4\right)}$.
e) Find the real part of $7+j 3 e^{j \pi \cos 60^{\circ}}$.

$$
\begin{gathered}
\text { Sol'n: a) } \frac{3-j}{1-j^{2}} \cdot \frac{1+j 2}{1+j 2}=\frac{3+2-j+j 6}{1^{2}+2^{2}}=\frac{5+j^{5}}{5} \\
=1+j
\end{gathered}
$$

$$
10-7-j 3 \sqrt{3}
$$

$$
3-j 3 \sqrt{3}
$$

d) $\frac{1}{1+j}=\frac{1}{\sqrt{2}<45^{\circ}}=\frac{1}{\sqrt{2}}<-45^{\circ} \rightarrow \frac{1}{\sqrt{2}} \cos \left(\right.$ i2okt $\left.-45^{\circ}\right)$
or $\begin{aligned} \frac{1}{1+j}=\frac{1}{1+j} \frac{1-j}{1-j}=\frac{1}{2}-j \frac{1}{2} & \rightarrow \frac{1}{2} \cos (120 k t) \\ & +\frac{1}{2} \sin (120 k t)\end{aligned}$
e)

$$
=\operatorname{Re}[7+j 3 j]=\operatorname{Re}[7-3]=\operatorname{Re}[4]=4
$$

2.

a) The current source in the above circuit has a value of

$$
i_{s}(t)=4 \cos (100 t) \mathrm{A}
$$

Choose an R, an L, or a C to be placed in the dashed-line box to make

$$
v(t)=\mathrm{V}_{\mathrm{o}} \cos \left(100 t-30^{\circ}\right)
$$

where V_{Q} is a positive, (ie., nonzero and non-negative), real constant with units of Volts. State the value of the component you choose.
3. With your component from problem 2 in the circuit, calculate the resulting value of Vo.
sol'n: a) We convert to the frequency domain.

$$
\begin{aligned}
& \omega=100 \mathrm{r} / \mathrm{s} \quad \text { from } i_{s}(t) \\
& j \omega L=j \cdot 100 \mathrm{r} / \mathrm{s} \cdot 2.5 \mathrm{mH}=j 0.25 \Omega \\
& \Pi_{s}=4 \angle 0^{\circ} \mathrm{A}, V=V_{0}<-30^{\circ}
\end{aligned}
$$

By Ohm's law, $V=\mathbb{I}_{S} \cdot z_{\text {tot }}=\mathbb{I}_{S^{*}}(R+j \omega L) \| z_{\text {box }}$

$$
V=I_{s} \frac{1}{\frac{1}{R+j \omega L}+\frac{1}{z_{b o x}}}
$$

We consider only the angle's:

$$
\angle V=\left\langle\mathbb{I}_{s}+\angle\left(\frac{1}{\frac{1}{R+j \omega L}+\frac{1}{Z_{b a x}}}\right)\right.
$$

Using $<\frac{1}{A<\phi}=-\phi$, we have

$$
\angle V=\angle \mathbb{I}_{s}-\angle\left(\frac{1}{R+j \omega L}+\frac{1}{z_{b o x}}\right)
$$

or

$$
-30^{\circ}=0^{\circ}-\angle\left(\frac{1}{R+j \omega L}+\frac{1}{z_{\text {box }}}\right)
$$

or

$$
\angle\left(\frac{1}{R+j \omega L}+\frac{1}{z_{\text {box }}}\right)=30^{\circ}
$$

Now

$$
\begin{aligned}
\frac{1}{R+j \omega L} & =\frac{1}{\frac{\sqrt{3}}{4}+j \frac{1}{4} \Omega}=\frac{4}{\sqrt{3}+j \Omega} \\
& =\frac{4}{\sqrt{3}+j} \frac{\sqrt{3}-j}{\sqrt{3}-j \Omega}=\frac{4(\sqrt{3}-j)}{\sqrt{3}^{2}+1^{2} \Omega}=\frac{\sqrt{3}-j}{\Omega}
\end{aligned}
$$

From the above diagram, we see that we need $1 / z_{\text {box }}$ to move us up to the 30° line. The real part of $\frac{1}{R+j \omega L}+\frac{1}{z_{\text {box }}}$ will be $\frac{\sqrt{3}}{\sqrt{2}}$. To be on 30° line,
we want $\frac{I_{m}}{\operatorname{Re}}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
or $I_{m}=\operatorname{Re} \cdot \frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{\sqrt{2}} \cdot \frac{1}{\sqrt{3}}=\frac{1}{\Omega}$
Thus, $\frac{1}{z_{\text {box }}}=j \frac{2}{\Omega}$ or $z_{\text {box }}=-\frac{j}{2} \Omega$

$$
\begin{aligned}
& z_{\text {box }}=\frac{-j}{2} \Omega \text { means we use a } C . \\
& \frac{1}{j \omega C}=-\frac{j}{2} \Omega
\end{aligned}
$$

or $C=\frac{2}{\omega \cdot \Omega}=\frac{2}{100} F=20 \mathrm{mF}$

$$
C=20 \mathrm{mF}
$$

3.

We can work in terms of magnitudes.

$$
\begin{aligned}
|V| & =V_{0}=\left|\mathbb{I}_{s}\right| \cdot|(R+j \omega L)|\left|z_{b o x}\right| \\
& =\left|\mathbb{I}_{s}\right| \cdot \frac{1}{\left|\frac{1}{R+j \omega L}+\frac{1}{z_{b o x}}\right|} \\
& =4 A \cdot \frac{1}{\left|\frac{\sqrt{3}-j}{\Omega}+\frac{j}{2 \Omega}\right|}=\frac{4}{|\sqrt{3}+1|}=\frac{4 V}{\sqrt{3+1}}
\end{aligned}
$$

$$
V_{0}=2, V
$$

4.

Choose an R , an L , or a C to be placed in the dashed-line box to make

$$
\mathrm{i}(\mathrm{t})=\mathbf{I}_{\mathrm{O}} \cos \left(100 \mathrm{t}-45^{\circ}\right) \mathrm{A}
$$

where \mathbf{I}_{0} is a real constant. State the value of the component you choose.
b. With your component from part (a) in the circuit, calculate the resulting value of I_{0}.
I_{0}.

join: a) $\begin{gathered}\text { Use conductance: } \\ \text { (and phasors) }\end{gathered} \quad \mathbb{I}=\mathbf{I}_{0}<-45^{\circ} \mathrm{A}=V_{g} \cdot\left(\frac{1}{20 \mathrm{k} \Omega}+j 100 \cdot \frac{1 \mu}{\Omega}+\frac{1}{z_{\text {box }}}\right)$
Note: $\omega=100$ from $v_{g}(t)$ where $V_{g}=12 \angle-90^{\circ} \mathrm{V}$
we have $<\mathbf{I}=\left\langle V_{g}+<G_{\text {tot }}\right.$ from phasor multiplication

$$
-45^{\circ}=-90^{\circ}+\angle \sigma_{\text {tot }}
$$

$$
\therefore<G_{\text {tot }}=45^{\circ} \text { or } \operatorname{Re}\left[G_{\text {tot }}\right]=\operatorname{Im}\left[G_{\text {tot }}\right]
$$

$$
G_{\text {tot }}=50 \frac{\mu}{\Omega}+j \frac{100 \mu}{\Omega}+\frac{1}{z_{\text {box }}}
$$

$$
\text { we can choose } \frac{1}{z_{\text {box }}}=\frac{50 \mu}{\Omega} \Rightarrow z_{\text {box }}=20 \mathrm{k} \Omega \text { resistor }
$$

$$
\text { or } \quad \frac{1}{z_{\text {box }}}=\frac{-j 50 \mu}{\Omega}=\frac{-j}{\omega L}=\frac{-j}{100 \cdot L}
$$

$\begin{aligned} \text { Note: } & \text { Fitter answer accepted } \\ & \text { but } 20 \mathrm{k} \Omega R \text { is more sensible. }\end{aligned} \quad \Rightarrow Z_{\text {box }}=200 \mathrm{H}$ inductor
b) $\quad \mathbb{I}_{0}=|\mathbb{I}|=\left|V_{g}\right| \cdot\left|G_{\text {tot }}\right|=12 \cdot \sqrt{2} \cdot 100 \mu A=\sqrt{2} 1.2 \mathrm{~mA}$ for $20 \mathrm{k} \sqrt{2} \mathrm{R}$

$$
\text { or } 12 \cdot \sqrt{2} \cdot 50 \mu A=\sqrt{2} 600 \mu A \text { for } 200 \mathrm{H} \mathrm{~L}
$$

5.

a. Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for $i_{s}(t)$, and show numerical impedance values for R, L, and C. Label the dependent source appropriately.
b. Find the Thevenin equivalent (in the frequency domain) for the circuit from Problem 6. Give the numerical phasor value for \mathbf{V}_{Th} and the numerical impedance value of z_{Th}.

Sol' n : 9) Frequency domain values:

$$
\begin{aligned}
\mathbb{I}_{S}= & 2 \angle 45^{\circ} \mathrm{mA} \\
j \omega L= & j 50 \mathrm{kr} / \mathrm{s} \cdot 60 \mathrm{mH}=j 3 \mathrm{k} \Omega \\
& \begin{aligned}
\text { from is }(t) \text { frequency }
\end{aligned} \\
\frac{1}{j \omega c}= & \frac{1}{j 50 \mathrm{k} \cdot \frac{1}{300} \mu}=\frac{-j}{\frac{1}{6} m}=-j 6 \mathrm{k} \Omega
\end{aligned}
$$

b) $\quad V_{T h}=V_{a, b}$ no load $=V_{x}$ no load

One approach is to use node $-V$ method to find V_{1} and a V-divider to find $V_{x}=V_{T h}$:

$$
V_{x}=V_{1} \frac{-j 6 k \Omega}{j 3 k \Omega-j 6 k \Omega}=V_{1} \frac{-2}{1-2}=2 V_{1}
$$

It is interesting to note that V_{x} is langer than the voltage driving the v-divider.

$$
\text { Node-V eq'n: }-2<45^{\circ}{ }_{m A}^{\prime}-\frac{2 V_{1}}{6 k \Omega}+\frac{V_{1}}{3 k_{\Omega}}+\frac{V_{1}}{j \frac{3 k \Omega-j 6 k \Omega}{}}=0 A
$$

or

$$
\nabla_{1}\left(-\frac{1}{3 k \Omega}+\frac{1}{3 k \Omega}+\frac{1}{-j 3 k \Omega}\right)=2<45^{\circ} m A
$$

or

$$
\begin{aligned}
& V_{1}=2 \angle 45^{\circ} \mathrm{mA}(-j 3 \mathrm{ke})=2 \angle 45^{\circ} \mathrm{mA} \cdot 3 \angle-90^{\circ} \mathrm{k} \Omega \\
& V_{1}=6 \angle-45^{\circ} \mathrm{V} \\
& V_{T h}=V_{x}=2 V_{1}=12 \angle-45^{\circ} \mathrm{V}
\end{aligned}
$$

For $z_{\text {Th }}$, using $z_{\text {Th }}=\frac{V_{\text {Th }}}{\mathbb{I}_{\text {sc }}}$ is convenient.

We have a current divider.

$$
\mathbb{I}_{s c}=\mathbb{I}_{s} \frac{3 k \Omega}{3 k+j 3 k \Omega}=2 \angle 45^{\circ} \mathrm{moA} \cdot \frac{1}{1+j}
$$

$\prime \prime=2 \angle 45^{\circ} \mathrm{mA} \cdot \frac{1}{\sqrt{2} \angle 45^{\circ}}=\frac{2}{\sqrt{2}} \angle 0^{\circ} \mathrm{mA}$

$$
\begin{gathered}
\prime \prime=\sqrt{2} \angle 0^{\circ} \mathrm{mA} \\
z_{T h}=\frac{V_{T h}}{\mathbb{I}_{s c}}=\frac{12 \angle-45^{\circ} \mathrm{V}}{\sqrt{2} \angle 0^{\circ} \mathrm{mA}}=6 \sqrt{2} \angle-45^{\circ} \mathrm{k} \Omega \\
\text { or } 6 \mathrm{k}-j 6 \mathrm{k} \Omega \\
\text { Summary: } \\
12 \angle-45^{\circ} \mathrm{V}=Z_{\text {Th }}=6 \mathrm{k} \Omega-j 6 \mathrm{k} \Omega \longrightarrow \mathrm{C}
\end{gathered}
$$

6.

a. Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for $v_{S}(t)$, and show numerical impedance values for R, L, and C. Label the dependent source appropriately.
b. Find the Thevenin equivalent (in the frequency domain) for the above circuit. Give the numerical phasor value for V_{Th} and the numerical impedance value of z_{Th}.

Solis: a) $\omega=100$ from $v_{s}(t) \quad j \omega L=j 100 \cdot 20 \mathrm{~m} \Omega=j^{2} \Omega$ $\frac{-j}{w C}=\frac{-j}{100.5 \mathrm{~m}} \Omega=\frac{-j}{500 \mathrm{~m}}=-j 2 \Omega$
phasor $V_{5} \equiv P[12 \cos (100 t)] V=12 \angle 0^{\circ} \mathrm{V}$

b) $V_{t h}=V_{a, b}$ with no load.
we have $z_{L}+z_{C}=0 \Omega$ so or across L ic C together.
Also, no current in $4 \Omega \Rightarrow$ or across 4Ω.
Add the $-12 V$ for v-sure to get $V_{T M}=-12 V$
For $Z_{\text {Th }}$, short a, b and measure i out of a terminal. circuit model: $4 v_{x}$ irrelevant $i_{s c}=\frac{-12 V}{4+2}=-3 \mathrm{~A}$

$$
z_{\text {Th }}=\frac{V_{\text {Th }}}{i s c}=\frac{-12 \nu}{-3 A}=4 \Omega
$$

7.

Construct a frequency-domain Thevenin equivalent circuit with respect to terminals $\mathrm{a}-\mathrm{b}$. Note that the L and C have impedances with equal magnitudes but opposite signs. Also, \mathbf{I}_{x} must not appear in your answer.

$$
\frac{V_{T h}-V_{s}}{j x_{1}}+\underset{\frac{V_{\text {th }}}{R}}{\frac{L}{x}}+\frac{V_{T h}}{-j x_{1}}+\frac{V_{T h}}{R}=0
$$

$$
V_{\text {th }}\left(\frac{1}{X_{1}}(j)+\frac{\beta}{R}+\frac{1}{X_{1}}(f j)+\frac{1}{R}\right)=\frac{V_{s}}{j X_{1}}
$$

$$
V_{\text {In }}=\frac{V_{s} \cdot R}{X_{i j}(\beta+1)}=\frac{-V_{s} R j}{X_{1}(\beta+1)}
$$

$$
\begin{aligned}
& \text { Using a test source: } \\
& I_{x}=\frac{1}{R}
\end{aligned}
$$

$$
\begin{aligned}
& I_{\text {test }}=\frac{(3+1)}{R}+\frac{(-j \gamma}{x_{1}}+\frac{(+j)}{x_{1}} \\
& z_{\text {th }}=\frac{1}{I_{\text {test }}}=\frac{R}{(3+1)}
\end{aligned}
$$

(8) $\rightarrow^{i(t)}$

$$
\begin{aligned}
& i(t)=2 \cos \left(2 k t+45^{\circ}\right) A \\
& 25 \mu F \Rightarrow \frac{-j}{2 k(25 \mu)}=-20 j
\end{aligned}
$$

$V g(t)=120 \sin \left(2 K t+45^{\circ}\right)=120 \sin \left(2 K t+45^{\circ}-90^{\circ}\right)$
$V_{g}=120 e^{-j 45^{\circ}}$

$$
I=\frac{\mathbb{V g}}{-20 j \| z}=\frac{\mathbb{V}(-20 j+z)}{-20 j(z)}=\frac{120 e^{-j 45^{\circ}}(-20 j+z)}{-20 j(z)}
$$

Need $\frac{(-20 j+z)}{-20 j(z)}$ to give an angle of $+90^{\circ}$
which is $+j$.
If $R: \frac{(-20 j+R)}{-20 j \cdot R}$ will give $\frac{L-45^{\circ}}{\frac{L-400^{\circ}}{-4}}$ (if $R=20$)
$\angle-45^{\circ} \angle+90^{\circ}=\angle+45^{\circ}$ (Not possible for $+90^{\circ}$
If $C: \frac{L\left(-20 j-C_{1 j}\right)}{L-20_{j}\left(-C_{1 j}\right)}=\frac{L-90^{\circ}}{L+20 C_{i j} j^{\prime}}=\frac{\angle-90^{\circ} \angle-180^{\circ}}{\angle-270^{\circ}}$

If $L: \frac{\angle\left(-20 j+j(2 k) L_{1}\right)}{L-\underbrace{20 j(j(2 k) L)}}$ will yield $+90^{\circ}$ if

$$
j(2 k) L_{1}>+20 j \Rightarrow L>\frac{20}{2 k} \Leftrightarrow
$$

8.

$$
\mathrm{V}_{\mathrm{g}}(\mathrm{t})=120 \sin \left(2000 \mathrm{t}+45^{\circ}\right) \mathrm{V}
$$

Choose one R , one L , or one C to be placed in the dashed-line box to make

$$
i(t)=2 \cos \left(2000 t+45^{\circ}\right) A
$$

State the type and value of the component you choose.

$$
\begin{aligned}
& \text { (8) cont. IFC: } \\
& \text { To get } \\
& I=2 e^{j 45^{\circ}}=\frac{120 e^{-j 45^{\circ}}\left(-20 j+\frac{-j}{2 k C}\right)}{-20 j\left(\frac{-j}{2 K C}\right)} \\
& I=2 e^{j 45^{\circ}}\left(\frac{20 j^{27^{-1}}}{2 L C}\right)=120 e^{-j 455^{-20 j}\left(-\frac{1}{2 K C}\right)}\left[\left(+20+\frac{+1}{2 K_{C}}\right)\right] \\
& \left.2 e^{j 45^{\circ}}\left(\frac{10}{1 \mathrm{KC}}\right) e^{j 180^{\circ}}=(1 \mathrm{KC}) 120 e^{-j 45^{\circ}-j 90^{\circ}} e^{[2(2 x / 2 \mathrm{~K})+1} \frac{2 \mathrm{KC}}{}\right] \\
& 20 e^{j 225^{\circ}}=120 e^{-j 355^{\circ}}\left[\frac{22(2 k c)+1}{2}\right] \\
& \frac{20(2)}{120}=e_{0}^{-j 360^{\circ}}(20(2 \mathrm{KC})+1) \\
& -\frac{\ln }{60}=\frac{-2}{6 k(20)}=\frac{\frac{1}{3}-\frac{3}{3}}{20(2 k)}=c \quad \begin{array}{c}
\text { (cant be negative!) } \\
\text { NOT possiBLE }
\end{array} \\
& \text { If } I: 2 e^{j 45 \rho^{\circ}}=\frac{120 e^{-j 455^{\circ}}(-20 j+j(2 k) L)}{-20 j(+j(2 k) L)}=\frac{120 e^{-j 45 \rho^{\circ}(20 j+j 2 k L)}}{+20(2 k) L} \\
& \frac{2(20)(2 K) L e^{\left(.445^{\circ} 45^{\circ}\right)}}{120 e^{-j 455^{\circ}}}+20 j=j 2 K L-\frac{80 K}{120} j L \\
& 20 j=j\left(2 K L-\frac{80 K L}{120}\right)=L\left(2 K-\frac{80 k}{120}\right) \\
& \therefore L=\frac{20(120)}{2 K(120)-80 K}=15 m H
\end{aligned}
$$

9.

a) Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for $i_{S}(t)$, and show numerical impedance values for R, L, and C. Label the dependent source appropriately.
b) Find the Thevenin equivalent (in the frequency domain) for the above circuit. Give the numerical phasor value for V_{Th} and the numerical impedance value of Z_{Th}.

$$
V_{1}=V_{x}
$$

$$
\frac{V_{1}}{3}-15+\frac{\left(V_{1}+V_{1}\right)}{8 j}=0
$$

$$
V_{1}\left(\frac{8}{24}+\frac{-3 j(2)}{24}\right)=+15
$$

$$
\therefore \quad V_{1}=\frac{15(24)}{8-6 j}
$$

$$
\left(+V_{1}+V_{1}\right)=+V_{\text {th }}
$$

$$
\therefore V_{\text {th }}=\frac{2(15)(24)}{\sqrt{8^{2}+6_{0}^{2}} e^{j \tan ^{-1}\left(-\frac{6}{8}\right)}} \cong \frac{720}{10} e^{+j 37^{\circ}} \cong 72 e^{j 37^{\circ}}
$$

$$
\begin{aligned}
& V_{2}-V_{1}=V_{x} \\
& V_{1}=V_{x} \\
& \therefore V_{2}=V_{x}+V_{x}=2 V_{x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{V_{2}}{8 j}+\frac{V_{2}-1}{-5 j}-15+\frac{V_{1}}{3}=0 \Rightarrow \frac{2 V_{x}}{8 j}+\frac{2 V_{x}}{-5 j}+\frac{1}{5 j}-15+\frac{V_{x}}{3}=0 \\
& V_{x}\left[\frac{1}{4 j}+\frac{2}{-5 j}+\frac{1}{3}\right]=+15-\frac{1}{5 j} \Rightarrow V_{x}\left[\frac{-j 5}{20}+\frac{8 j}{20}+\frac{1}{3}\right]=\left(15+\frac{j}{5}\right) \\
& V_{x}=\frac{(15+j / 5)}{\left(V_{3}+3 j / 20\right)} \quad \therefore I_{\text {test }}=\frac{1-2 V_{x}}{-5 j} \\
& Z_{\text {th }}=\frac{1}{\text { Itest }} \cong 0.06 e^{j 1140}
\end{aligned}
$$

10.

a. Choose an R, an L, or a C to be placed in the dashed-line box to make

$$
V(t)=V_{\mathrm{o}} \cos (1 k t)
$$

where V_{o} is a positive, (i.e., nonzero and non-negative), real constant with units of Volts. State the value of the component you choose.
b. Calculate the resulting value of V_{o}.

$$
\begin{aligned}
& v(t)=v_{0} \cos (1 k t) \\
& V-\frac{2 m e^{-j 455^{\circ}}\left(k k_{j}\right)}{k j+z}=\frac{2 m e^{-j 45^{\circ}}(1 k) e^{j 90^{\circ}}}{1 k_{j}+z}=\frac{2 e^{j 445^{\circ}}}{\left(\frac{\left.k k_{j}+z\right)}{}\right.} \\
& \text { to get } e^{j 45^{\circ}}: 1 k j+z \\
& \begin{array}{ll}
Z=R=1 K & \text { Loo of end } \\
\text { result form. }
\end{array} \\
& \text { to achieve, } \\
& \mathbb{V}=\frac{2 e^{j 45^{\circ}}}{1 k \sqrt{2} e^{j 45^{\circ}}}=\frac{2}{1 k \sqrt{2}}=v_{0}
\end{aligned}
$$

