(Each problem is worth double points)

1.

The above circuit operates in linear mode. Derive a symbolic expression for v_{0}. The expression must contain not more than the parameters $i_{\mathrm{s} 1}, i_{\mathrm{s} 2}, R_{1}, R_{2}, R_{3}, R_{4}, R_{5}$, and R_{6}.
2. If $i_{\mathrm{s} 1}=100 \mu \mathrm{~A}$ and $i_{\mathrm{s} 2}=0 \mathrm{~A}$, find the value of $R_{3}=R_{6}$ that will yield an output voltage of $v_{0}=-6 \mathrm{~V}$.
3. Assuming $R_{1}=R_{4}, R_{2}=R_{5}$, and $R_{3}=R_{6}$ derive a symbolic expression for v_{o} in terms of common mode and differential input voltages:

$$
i_{\mathrm{cm}} \equiv \frac{\left(i_{s 2}+i_{s 1}\right)}{2} \quad \text { and } \quad i_{\mathrm{dm}} \equiv i_{s 2}-i_{s 1}
$$

The expression must contain not more than the parameters $i_{\mathrm{cm}}, i_{\mathrm{dm}}, R_{1}, R_{2}$, and R_{3}. Write the expression as i_{cm} times a term plus i_{dm} times a term. Hint: start by writing $i_{\mathrm{s} 1}$ and $i_{\mathrm{s} 2}$ in terms of i_{cm} and i_{dm} :

$$
i_{s 1}=i_{\mathrm{cm}}-\frac{i_{\mathrm{dm}}}{2} \quad \text { and } \quad i_{s 2}=i_{\mathrm{cm}}+\frac{i_{\mathrm{dm}}}{2}
$$

4. Assuming $i_{\mathrm{s} 2}=0 \mathrm{~A}$, find the numerical value of the circuit's input resistance, R_{in}, as seen by source $i_{\mathrm{s} 1}$. In other words, write a formula for voltage, ν_{1}, divided by $i_{\mathrm{s} 1}$:

$$
R_{\mathrm{in}} \equiv \frac{v_{1}}{i_{s 1}}
$$

Write $R_{\text {in }}$ in terms of not more (and possibly less) than R_{1}, R_{2}, and R_{3}.
5.

Rail voltages $= \pm 9 \mathrm{~V}$
After being open for a long time, the switch closes at time $t=t_{0}$.

Choose either an R or L to go in box a and either an R or L to go in box \mathbf{b} to produce the $v_{\mathrm{o}}(\mathrm{t})$ shown above. Note that v_{O} stays low forever after $t_{\mathrm{O}}+220 \mathrm{~ns}$. Specify which element goes in each box and its value.
6. a) Sketch $v_{1}(t)$, showing numerical values appropriately.
b) Sketch $v_{2}(t)$, showing numerical values appropriately.
7. Sketch $v_{3}(t)$. Show numerical values for $t<t_{\mathrm{o}}$, for $t_{\mathrm{o}}<t<t_{\mathrm{o}}+220 \mathrm{~ns}$, and for $t>t_{\mathrm{O}}+220 \mathrm{~ns}$. Use the ideal model of the diode: when forward biased, its resistance is zero, (a wire); when reverse biased, its resistance is infinite, (an open).
8.

A frequency-domain circuit is shown above. Write the value of phasor current \mathbf{I}_{1} in polar form.
9. Given $\omega=377 \mathrm{rad} / \mathrm{s}$, write a numerical time-domain expression for $i_{1}(t)$, the inverse phasor of I_{1}.
10.

a) Find the Thevenin equivalent of the above circuit relative to terminals \mathbf{a} and \mathbf{b}.
b) If we attach R_{L} to terminals \mathbf{a} and \mathbf{b}, find the value of R_{L} that will absorb maximum power.
c) Calculate the value of that maximum power absorbed by R_{L}.

