Ex:

After being open for a long time, the switch closes at $t = 0$.

Write a numerical expression for $i(t)$ for $t > 0$.

\[
i(t) = i(t \to \infty) + \left[i(t = 0^+) - i(t \to \infty) \right] e^{-t/R_cC}, \quad t > 0
\]

$t = 0^-$ models: C = open circuit, find $v_C(0^-)$

Switch open, 30mA disconnected

Since there is no power source and there is a resistor across C to discharge it, we must have

\[
v_C(0^-) = 0 \text{V}
\]

Note: No current can flow in the single wire to the left since that would cause charge to accumulate in that part of the circuit. There is no complete circuit.
\(t=0^+ \): \(v_c(t=0^+)=v_c(t=0^-) \) since the energy variable \(v_c \) cannot change instantly. We model \(C \) as a \(v \)-src for the instant in time \(t=0^+ \).
\(v_c(0^+)=v_c(0^-)=0 \) V acts like a wire.

\[
\begin{align*}
30mA & \quad 1k\Omega \quad L(v(t)) \quad \text{wire shorts out 2k}\Omega \\
\text{\textbullet} & \quad 2k\Omega \\
\end{align*}
\]

\(\therefore \) 0 V across 2k\(\Omega \)

We have a current divider with \(R=1k\Omega \) flows in 2k\(\Omega \) by Ohm's law.

\[
\begin{align*}
\dot{i}(0^+) &= 30mA \cdot \frac{1k\Omega}{1k\Omega+1k\Omega} = 15 \text{ mA} \\
\end{align*}
\]

\(t \to \infty \): \(C \) acts like open circuit

\[
\begin{align*}
30mA & \quad 1k\Omega \quad L(i(t+\infty)) \quad 2k\Omega \\
\text{\textbullet} & \quad \text{2k}\Omega \\
\end{align*}
\]

We have a current divider with 1k\(\Omega \) on left and 1k\(\Omega \)+2k\(\Omega \)=3k\(\Omega \) on right.

\[
\begin{align*}
\therefore \ i(t+\infty) &= 30mA \cdot \frac{3k\Omega}{1k\Omega+3k\Omega} = 22.5 \text{ mA} \\
\end{align*}
\]

\(\tau = R_{Th} C \): We find \(R_{Th} \) looking into terminals where \(C \) is connected.
In this circuit, we need only turn off the independent source and look into the circuit from the terminals where the C is connected to find R_{Th}.

We may redraw the circuit as follows:

We have

\[R_{Th} = 2 \, k\Omega \parallel (1 \, k\Omega + 1 \, k\Omega) = 1 \, k\Omega \]

\[R_{Th}C = 1 \, k\Omega \cdot 0.25 \, \text{ms} = 0.25 \, \text{s} \]

Combining results, we have our final answer:

\[i(t) = 22.5 \, \text{mA} + (15 \, \text{mA} - 22.5 \, \text{mA}) e^{-t/0.25} \]