Ex:

Rail voltage = ±9 V

a) The above circuit operates in linear mode. Derive a symbolic expression for \(v_o \).
The expression must contain not more than the parameters \(i_s, v_s, R_1, R_2, \) and \(R_3 \).

b) If \(v_s = 0 \) V, find the value of \(R_2 \) that will yield an output voltage of \(v_o = 1 \) V when \(i_s = 1 \) mA.

c) Using the value of \(R_2 \) from part (a), find the value of \(v_s \) that will yield \(v_o = 1 \) V when \(i_s = 0 \) A.

d) Using the value of \(R_2 \) from part (a), calculate the input resistance, \(R_{in} = v_1/i_s \), seen by the \(i_s \) source.

\[\text{sol'n: a) } \]
First, we find the voltage, \(v_1 \), at the + input of the op-amp.

\[v_1 = i_s \cdot R_{1||R_2} \]

Second, we assume the voltage, \(v_n \), at the - input of the op-amp = \(v_i \).
\[V_n = i_d \cdot R_1 \parallel R_2 \]

Third, we find the value of \(V_0 \) that yields the above value of \(V_n \).

Since no current flows into the op-amp inputs, no current flows in \(R_3 \), and \(R_3 \) has no voltage drop.

\[\therefore V_0 = V_n - V_g \]

or \[V_0 = i_d \cdot R_1 \parallel R_2 - V_g \]

b) Given \(V_g = 0V \) and \(i_d = 1mA \) we are to find the value of \(R_2 \) that yields \(V_0 = 1V \).

Using the expression in (a) for \(V_0 \) we have

\[1V = 1mA \cdot 2k\Omega \parallel R_2 - 0V \]

or \[2k\Omega \parallel R_2 = 1k\Omega \]

or \[R_2 = 2k\Omega \]

\[\text{or} \]

\[V_g = -1V \]

\[\text{or} \]

\[V_g = -1V \]

\[\text{or} \]

\[V_g = -1V \]
d) From part (a), we have the following:

\[v_1 = i_s \cdot R_1 \parallel R_2 \]

\[R_{in} = \frac{v_1}{i_s} = R_1 \parallel R_2 = 1k\Omega \]