Ex:

After being in position e for a long time, the switch moves from e to d at $t = t_0$.

Rail voltages = ± 12 V

a) Choose either an R or C to go in box a and either an R or C to go in box b to produce the $v_0(t)$ shown above. (Note that v_0 stays high forever after $t_0 + 2$ ms.) Specify which element goes in each box and its value.

b) Sketch $v_1(t)$, showing numerical values appropriately.

c) Sketch $v_2(t)$, showing numerical values appropriately.

d) Sketch $v_3(t)$. Show numerical values for $t < t_0$, for $t_0 < t < t_0 + 2$ ms, and for $t_0 + 2$ ms $< t$. Use the ideal model of the diode: when forward biased, its resistance is zero; when reverse biased, its resistance is infinite.
SOLN: a) For \(v_0 \) to be low, (i.e., \(-12V\)), we must have \(v_2 < v_1 \).

To find \(v_1 \), we slide the 4V source through the 6kΩ resistor and find that we have the equivalent of a \(-15V\) source and a voltage divider formed by the 3kΩ and 6kΩ resistors.

\[
v_1 = -15V \cdot \frac{3k\Omega}{3k\Omega + 6k\Omega} = -5V
\]

At \(t=0^- \), we must have \(v_2 < -5V \).

This is possible only if box a contains a resistor and box b contains a capacitor. If a is an R and b is a C, then the C will charge until \(v_2 = -10V < v_1 \).

When the switch moves from c to d, the capacitor voltage starts charging toward 0V, but it will still be \(-10V\) initially. This gives the desired waveform for \(v_0(t) \): \(v_0 \) will go high when \(v_2 = v_1 = -5V \).

Note: The reasons why other components in boxes a and b fail to yield the desired \(v_0(t) \) are as follows:
\(a = R \) and \(b = R \) cannot give a waveform that changes after a delay. \(v_o \) would have to change instantly at \(t = t_a \).

\(a = C \) and \(b = R \) would result in \(C \) charging until no current flows in \(R \). This means \(v_2 = 0V \), or \(v_2 > v_1 \), causing \(v_o \) to be high before \(t = t_a \).

\(a = C \) and \(b = C \) would result in an arbitrary voltage at \(v_2 \). The total voltage drop across the two \(C \)’s would be 10V. When the switch changes from \(c \) to \(d \), the capacitors would charge until the total voltage drop across them was 0V. The same current would flow in both \(C \)'s, causing a voltage change that would be inversely proportional to the \(C \) values. The waveform shown for \(v_o(t) \) could be produced, but there is a lack of control over the initial value of \(v_2 \). This would make the timing of the \(v_o(t) \) waveform uncertain. Thus, we reject this solution.
Now we find possible values for R and C. We have the following circuit model for $t > t_0$:

\[V_c(t > t_0) = V_c(t \to \infty) + \left[V_c(t_0^+) - V_c(t_\to \infty) \right] e^{-t/\tau} \]

\[V_c(t_0^+) = -10 \text{V} \]

\[V_c(t > t_0) = -10 e^{-t/\tau} \text{V} \] (where we take $t_0 = 0$)

where \(\tau = (R + 1 \text{ k}\Omega) C \)

We want \(V_c(t = 2 \text{ ms}) = V_1 = -5 \text{V} \)

or \(-10 e^{-2 \text{ ms} / \tau} = -5 \text{V} \)

\[e^{-2 \text{ ms} / \tau} = \frac{1}{2} \]

\[-2 \text{ ms} = \tau \ln \frac{1}{2} \]

\[\tau = \frac{2 \text{ ms}}{\ln 2} \approx 2.9 \text{ ms} \]

One solution is $R = 1.9 \text{ k}\Omega$ and $C = 1 \mu\text{F}$.

Note: $R = 0 \Omega$ is min R, $C = 2.9 \mu\text{F}$ is max C.
b) \(v_1(t) = -5V \) as shown earlier.

\[
v_3 = -12V \cdot \frac{5 \text{k}\Omega}{2 \text{k}\Omega + 5 \text{k}\Omega} = -\frac{60}{7} \text{V}.
\]
When v_0 is high, the top diode will act like an open circuit, leaving the bottom part of the circuit disconnected from v_0, (or any other power source).

Thus $v_3 = 0V$ when v_0 is high.