Ex:

Find i_x, v_1, and the power dissipated by the dependent source.

Sol'n: First, we observe that i_x flows thru all 3 resistors since they are in series.

Rather than defining voltages for every resistor, we may use Ohm's law directly to define the voltages as $v = i \cdot R$. Note that the + and - signs of the voltage measurements must obey the passive sign convention: the current arrow must point toward the - sign of the v-drop measurement.

Turning to v-loop eqns, we discover that all loops pass thru current sources, meaning we should avoid writing these v-loop eqns.

Note: even though the dependent current source is labeled with a v-drop, we should avoid using v_1 in a v-loop. Instead, we can solve the circuit first and then find v_1.
We now write a current-sum eq'n for the top-center node:

\[-5i_x + 8 \text{mA} + i_x = 0 \text{A}\]

or \[4i_x = 8 \text{mA}\]

or \[i_x = 2 \text{mA}\]

Now we use a v-loop around the outside of the circuit to find \(v_1\):

\[-v_1 - i_x 15 \text{k}\Omega - i_x 20 \text{k}\Omega - i_x 10 \text{k}\Omega + 60V = 0\text{V}\]

or \[v_1 = -i_x (15 \text{k}\Omega + 20 \text{k}\Omega + 10 \text{k}\Omega) + 60V\]

\[= -2\text{mA} \cdot 45 \text{k}\Omega + 60V\]

\[= -90V + 60V\]

\[v_1 = -30V\]

The power for the dependent source is

\[p = i \cdot v = 5i_x v_1 = 5 (2\text{mA})(-30V)\]

\[p = -300 \text{ mW}\]