ECE 1270Laboratory Project 2: Visual Perception Experiment
Laboratory Notebook Contents and Grading

U

30	Communication
4	Work recorded in notebook (rather than pasted in)
8	Complete information: task descriptions, diagrams, data, reproducible one year later
4	Written in Ink Student Signed every page
4	Student Dated every page
6	TA Signature for every lab session (-3 each session missed)
12 IV	OP-AMP IN COMPARATOR MODE
12 11.	C Procedure
1	2) Test voltage-divider (explanation schematic verified v ₂ varies around 0V)
1	3) Explanation of task (built comparator)
1	Schematic of comparator circuit
1	4) Explanation of testing (varied v_2 around 0V, measured v_0)
3	Table II filled in with measured v_0 rail-voltage values
4	Table III filled in with measured v_0 (with load) values
8 V.	Op-Amp as Schmidt Trigger
	C. Procedure
1	1) Explanation of task (designed and built Schmidt trigger)
1	Schematic of Schmidt trigger circuit
2 1	3) Test of circuit (vo varied noted whether I FD turning on and off)
3	4) Measured value of v_1 for v_0 high and low (note whether close to expected v_1)
20 VI.	<i>RC</i> CIRCUIT
	C. Procedure
1	1) Explanation of task (designed and built <i>RC</i> circuit)
1	Schematic of <i>RC</i> circuit
2	Derivation of R value for time constant $\tau = 50 \text{ ms}$
4	3) Measure RC circuit output with 10 Hz square-wave input (Matiao v_2 plot) 4) Measured value of initial voltage on C
10^{2}	5) Measured and predicted vp (Matlab [®] vp plot)
14 VII.	SCHMIDT TRIGGER WITH RC CIRCUIT INPUT
	C. Procedure
1	1) Explanation of task (designed and built Schmidt trigger with RC input)
1	Schematic of Schmidt trigger with RC circuit
3	Calculation of delay time between square wave input and v_2 switching
5	3) Measured v_2 and v_0 (Matlab [®] plot) 4) Explanation of waveform for w_0
4 12 VIII	4) Explanation of waveform for v_0 .
12 1111.	C Procedure
1	1) Explanation of task (designed and built Oscillator circuit measured CFF)
1	Schematic of oscillator circuit
6	Symbolic expression for how long half-cycle of v_0 square wave will last
3	Calculation of minimum and maximum value of duration of half cycles
	3) Measured critical fusion frequency (CFF) of LED
4	CONCLUSION
4	Comment on shortcomings/possible improvements of oscillator circuit