1. (75 points)

$$
\text { Rail voltages }= \pm 8 \mathrm{~V}
$$

Design an electronic thermometer using the circuit diagram shown above. The voltage v_{3} is used to indicate temperature. Use a thermistor with a resistance described by

$$
R_{T}=R_{o} e^{2000\left(\frac{1}{T}-\frac{1}{300}\right)}
$$

where $\mathrm{R}_{\mathrm{O}}=12 \mathrm{k} \Omega$ and T is temperature in ${ }^{\circ} \mathrm{K}$.
a. Choose circuit components that will produce the following:

$$
\begin{array}{lll}
\mathrm{v}_{3}=0 \mathrm{~V} & \text { when } & \mathrm{T}=273^{\circ} \mathrm{K} \\
\mathrm{v}_{3}=1 \mathrm{~V} & \text { when } & \mathrm{T}=373^{\circ} \mathrm{K} .
\end{array}
$$

Be sure the operational amplifier would not saturate. Explain your work carefully.
b. Using the component values you chose above, calculate v_{3} when $\mathrm{T}=323^{\circ} \mathrm{K}$. Make a rough sketch of $\mathrm{v}_{3} \mathrm{vs} . \mathrm{T}$ on the basis of the values when $\mathrm{T}=273^{\circ} \mathrm{K}, 323^{\circ} \mathrm{K}$, and $373^{\circ} \mathrm{K}$. On the same axes, sketch the ideal linear response. Comment on the quality of the response compared to the desired linear response.
2. (70 points)

After having been c for a long time, the switch is moved to position d at $\mathrm{t}=\mathrm{t}_{\mathrm{o}}$.

a. Choose either an R or C to go in box a and either an R or C to go in box b to produce the $v_{o}(t)$ shown in the diagram. Specify which element goes in each box, and specify each value.
b. Sketch $\mathrm{v}_{2}(\mathrm{t})$, the voltage across the circuit element in box b . Show numerical values appropriately.
c. Sketch $v_{1}(t)$, showing numerical values appropriately.
d. Sketch $\mathrm{v}_{4}(\mathrm{t})$. Show numerical values for $\mathrm{t}<\mathrm{t}_{\mathrm{o}}$, for $\mathrm{t}_{\mathrm{o}}<\mathrm{t}<\left(\mathrm{t}_{\mathrm{o}}+2 \mathrm{~ms}\right)$, and for $\mathrm{t}>\left(\mathrm{t}_{\mathrm{o}}+2 \mathrm{~ms}\right)$. Use the ideal model of the diode: when forward biased, its resistance is zero; when reversed biased, its resistance is infinite.

Explain your work carefully.
3. (30 points)

a. Choose the value of Z_{L} that will absorb maximum average power.
b. Calculate the value of that maximum average power absorbed by Z_{L}.
4. (25 points)

a. Write an equation for the node voltages $\mathrm{v}_{1}, \mathrm{v}_{2}$, and v_{3} in the form:

$$
\begin{aligned}
& g_{11} v_{1}+g_{12} v_{2}+g_{13} v_{3}=i_{1} \\
& g_{21} v_{1}+g_{22} v_{2}+g_{23} v_{3}=i_{2} \\
& g_{31} v_{1}+g_{32} v_{2}+g_{33} v_{3}=i_{3}
\end{aligned}
$$

List the numerical values of g_{ij} 's and i_{j} 's.

