1. (a) (10 points)

For the circuit shown, write three independent equations for the node voltages v_{1}, v_{2}, and v_{3}. The quantity i_{x} must not appear in the equations.
(b) (10 points)

Make a consistency check on your equations by setting one or more resistor values to 0 or ∞ and setting other sources and resistor to values for which v_{1}, v_{2}, and v_{3} are obvious.
(c) (10 points)

For the circuit shown, write three independent equations for the three mesh currents i_{1}, i_{2}, and i_{3}. The quantity v_{1} must not appear in the equations.
(d) Make a consistency check on your equations by setting one or more sources to zero and using convenient resistor and source values.

Solution:

We have a supernode, (dashed box on diagram, above), since v_{1} and v_{2} are connected by a V source. Sum of currents out of both nodes $=0 \mathrm{~A}$:

$$
\frac{v_{1}}{R_{2}}+\frac{\mathrm{v}_{1}-\left(\mathrm{v}_{3}-\mathrm{v}_{\mathrm{S} 1}\right)}{\mathrm{R}_{1}}+\frac{\mathrm{v}_{2}-\mathrm{v}_{3}}{\mathrm{R}_{3}}-\beta \mathrm{i}_{\mathrm{x}}=0 \mathrm{~A}
$$

v_{1} and v_{2} are related by V drop between them:

$$
v_{2}-v_{1}=v_{S 2}
$$

Now we need the node- V equation for v_{3} :

$$
\frac{\left(\mathrm{v}_{3}-\mathrm{v}_{\mathrm{S}}\right)-\mathrm{v}_{1}}{\mathrm{R}_{1}}+\frac{\mathrm{v}_{3}-\mathrm{v}_{2}}{\mathrm{R}_{3}}+\mathrm{i}_{\mathrm{S}}=0 \mathrm{~A}
$$

Now we eliminate i_{x} by expressing it in terms of node voltages:

$$
\mathrm{i}_{\mathrm{x}}=\frac{\left(\mathrm{v}_{3}-\mathrm{V}_{\mathrm{S} 1}\right)-\mathrm{v}_{1}}{\mathrm{R}_{1}} \text { substitute into the first equation to get: }
$$

$$
\frac{\mathrm{v}_{1}}{\mathrm{R}_{2}}+\frac{\mathrm{v}_{1}-\left(\mathrm{v}_{3}-\mathrm{v}_{\mathrm{Sl}}\right)}{\mathrm{R}_{1}}+\frac{\mathrm{v}_{2}-\mathrm{v}_{3}}{\mathrm{R}_{3}}-\frac{\beta\left[\left(\mathrm{v}_{3}-\mathrm{V}_{\mathrm{Sl}}\right)-\mathrm{v}_{1}\right]}{\mathrm{R}_{1}}=0 \mathrm{~A}
$$

(b) Consistency checks. Choose convenient source and R values, and verify that the equations are satisfied.

Check: $\quad \mathrm{R}_{1}=\infty \Omega \Rightarrow \mathrm{i}_{\mathrm{X}}=0, \beta \mathrm{i}_{\mathrm{X}}=0, \mathrm{~V}_{\mathrm{S} 1}$ disconnected

We observe that i_{s} flows around the entire loop. Therefore,

$$
\begin{aligned}
& v_{1}=-i_{S} R_{2} \\
& v_{2}=v_{1}+V_{S 2}=-i_{S} R_{2}+V_{S 2} \\
& v_{3}=v_{2}-i_{S} R_{3}=-i_{S}\left(R_{2}+R_{3}\right)+V_{S 2}
\end{aligned}
$$

Plug v's into our answer to (a):

1) $\mathrm{v}_{2}-\mathrm{v}_{1}=-\mathrm{i} \mathrm{i}_{8} R_{2}+\mathrm{V}_{\mathrm{S} 2}-\left(-\mathrm{i}_{8} R_{2}\right)=\mathrm{V}_{\mathrm{S} 2}$
2)

$$
\begin{aligned}
\frac{\left(v_{3}-v_{S 1}\right)-v_{1}}{R_{1}}+\frac{v_{3}-v_{2}}{R_{3}}+i_{S}= & \frac{\left(-i_{S}\left(R_{2}+R_{3}\right)+v_{S 2}-v_{S 1}\right)-\left(-i_{S} R_{2}\right)}{\infty} \\
& +\frac{-i_{S}\left(R_{2}+R_{3}\right)+y_{S 2}-\left(-i_{S} \not K_{2}+y_{S 2}\right)}{R_{3}} \\
& +i_{S} \\
= & \frac{-i_{S} R_{3}}{\mathbb{R}_{3}}+i_{S}=0 \mathrm{~A} \quad \checkmark
\end{aligned}
$$

3)

$$
\begin{aligned}
\frac{v_{1}}{R_{2}}+ & \frac{v_{1}-\left(v_{3}-v_{S 1}\right)}{R_{1}}+\frac{v_{2}-v_{3}}{R_{3}}-\frac{\beta\left[\left(v_{3}-v_{S 1}\right)-v_{1}\right]}{R_{1}} \\
= & \frac{-i_{S} L_{2}}{R_{2}}+\frac{-i_{S} R_{2}-\left(-i_{S}\left(R_{2}+R_{3}\right)+V_{S 2}-v_{S 1}\right)}{\infty} \\
& +\frac{-i_{8} K_{2}+V_{S 2}-\left(-i_{S}\left(R_{2}+R_{3}\right)+V_{S 2}\right)}{R_{3}} \\
& -\frac{\beta\left[\left(-i_{S}\left(R_{2}+R_{3}\right)+v_{S 2}-v_{S 1}\right)--i_{S} R_{2}\right]}{\infty} \\
= & -i_{S}+i_{S}=0 A \quad
\end{aligned}
$$

Check: $\mathrm{R}_{3}=\infty \Omega$ and $\mathrm{V}_{\mathrm{S} 1}=0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{S} 2}=0 \mathrm{~V}$ and $\mathrm{i}_{\mathrm{S}}=1 \mathrm{~A}$

Plug v's into our equations from (a)

1) $\mathrm{v}_{2}-\mathrm{v}_{1}=\mathrm{v}_{1}-\mathrm{v}_{1}=0=\mathrm{V}_{\mathrm{S} 2}$
2)

$$
\begin{aligned}
\frac{\left(v_{3}-V_{S 1}\right)-v_{1}}{R_{1}}+\frac{v_{3}-v_{2}}{R_{3}}+i_{S}= & \frac{\left(\left[(1+\beta) R_{2}+R_{i}\right](-1 A)-0\right)-(1+\beta) R_{2}(-1 A)}{R_{1}^{*}} \\
& +\frac{\left.\left[(1+\beta) R_{2}+R_{1}\right]-1 \not\right)^{0}-(1+\beta) R_{2}(-1 \mathrm{~A})}{\infty} \\
& +1 \mathrm{~A} \\
= & -1 \mathrm{~A}+1 \mathrm{~A}=0 \mathrm{~A}
\end{aligned}
$$

3)

$$
\begin{aligned}
\frac{v_{1}}{R_{2}}+ & \frac{v_{1}-\left(v_{3}-v_{S 1}\right)}{R_{1}}+\frac{v_{2}-v_{3}}{R_{1}}-\frac{\beta\left[\left(v_{3}-v_{S 1}\right)-v_{1}\right]}{R_{1}} \\
= & \frac{(1+\beta) R_{2}(-1 A)}{R_{2}}+\frac{\left.(1+\beta) R_{2}(-1 A)-\left(\sqrt{1}(1+\beta) R_{2}+R_{1}\right](-1 A)-0\right)}{R_{i}} \\
& +\frac{(1+\beta) R_{2}(-1 A)-\left[(1+\beta) R_{2}+R_{1}\right](-1 A)}{\infty} \\
& -\frac{\left(\beta\left(\left[(1+\beta) R_{2}+R_{i}\right](-1 A)-0\right)-(1+\beta) R_{2}(-1 A)\right)}{R_{1}} \\
= & (1+\beta)(-1 A)+(1+\beta)(-1 A) \frac{R_{2}}{R_{1}}-\frac{(1+\beta)(-1 A)}{R_{1}}-(-1 A)-\beta(-1 A) \\
= & 0 \mathrm{~A} \quad
\end{aligned}
$$

Note: It is probably easier to choose actual numerical values for all the components. Where possible, you may wish to use values that are easy to work with and can be uniquely associated with a component.
$\mathrm{R}_{1}=1 \Omega, \mathrm{R}_{2}=2 \Omega, \mathrm{R}_{3}=3 \Omega, \mathrm{i}_{\mathrm{s}}=4 \mathrm{~A}, \mathrm{~V}_{\mathrm{S} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 2}=10 \mathrm{~V}$, for example.

We might choose $\beta=9$ so we get $1+\beta=10$, for convenience.
We might also choose to avoid multiplying numbers, and instead try to cancel out terms as in the above solution.
P.S.: I found an error in my solution to (a) from the consistency checks performed above. It works!
(c)

We have a supermesh where the $i_{\text {s }}$ source is located. We go around the outer loop containing i_{s}.

$$
V_{S 1}-i_{1} R_{1}-\left(i_{1}-i_{3}\right) R_{2}-\left(i_{2}-i_{3}\right) R_{3}+\beta v_{1}=0 V
$$

We observe that we have constraint equation $v_{1}=-i_{1} R_{1}$. Substitute this constraint into the first equation to eliminate v_{1} :

$$
V_{S 1}-i_{1} R_{1}-\left(i_{1}-i_{3}\right) R_{2}-\left(i_{2}-i_{3}\right) R_{3}-\beta i_{1} R_{1}=0 V
$$

We need one more constraint equation. It arises from the current source we left out of the supermesh equation

$$
\mathrm{i}_{\mathrm{S}}=\mathrm{i}_{1}-\mathrm{i}_{2}
$$

For i3 mesh loop, we have:

$$
V_{S 2}-\left(i_{3}-i_{2}\right)_{R_{3}}-\left(i_{3}-i_{1}\right) R_{2}=0 \mathrm{~V}
$$

1. (d) Consistency checks.

Check: $V_{S 1}=0$ and $V_{S 2}=0$ and $\beta=0$ and $R_{1}=1 \Omega, R_{2}=1 \Omega, R_{3}=3 \Omega$ and $\mathrm{i}_{\mathrm{s}}=5 \mathrm{~A}$.

We may redraw the circuit R_{1} shorted by the wire on the right. When drawn this way, i_{3} flows up on the right outside edge.

Only i_{1} flows through R_{1}, and $i_{1}=0$. Therefore, we may remove R_{1}.

We have a current divider.

$$
\begin{aligned}
& i_{3}=\frac{\mathrm{R}_{3}}{\mathrm{R}_{2}+\mathrm{R}_{3}} \cdot\left(-\mathrm{i}_{\mathrm{s}}\right)=\frac{3 \Omega}{2 \Omega+3 \Omega}(-5 \mathrm{~A})=-3 \mathrm{~A} \\
& \mathrm{i}_{2}=-\mathrm{i}_{\mathrm{s}}=-5 \mathrm{~A}, \quad \mathrm{i}_{1}=0 \mathrm{~A} \\
& \mathrm{i}_{1}-\mathrm{i}_{2}=\mathrm{i}_{\mathrm{s}}
\end{aligned}
$$

Plug i's and R's into our answer to (c):
1)

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{S} 1}-\mathrm{i}_{1} \mathrm{R}_{1}-\left(\mathrm{i}_{1}-\mathrm{i}_{3}\right) \mathrm{R}_{2}-\left(\mathrm{i}_{2}-\mathrm{i}_{3}\right) \mathrm{R}_{3}-\beta \mathrm{i}_{1} \mathrm{R}_{1} \\
& \quad=0-0 \cdot 1-(0--3) \cdot 2-(-5--3) \cdot 3-0 \cdot 0 \cdot 1 \\
& \quad=0-0-6+6=0 \mathrm{~V}
\end{aligned}
$$

2)

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{S} 2}-\left(\mathrm{i}_{3}-\mathrm{i}_{2}\right) \mathrm{R}_{3}-\left(\mathrm{i}_{3}-\mathrm{i}_{1}\right) \mathrm{R}_{2} \\
& \quad=0-(-3--5) 3-(-3-0) \cdot 2 \\
& \quad=0-6+6=0 \mathrm{~V}
\end{aligned}
$$

3)

$$
\mathrm{i}_{\mathrm{s}}=5 \mathrm{~A}=0--5=\mathrm{i}_{1}-\mathrm{i}_{2}
$$

Or check: $i_{s}=0, R_{1}=1 \Omega . \mathrm{R}_{2}=2 \Omega . \mathrm{R}_{3}=3 \Omega . \mathrm{V}_{\mathrm{S} 2}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 1}=5 \mathrm{~V}, \beta=4$

10 V across $\mathrm{R}_{2}+\mathrm{R}_{3}=5 \Omega$
$\therefore \quad \mathrm{i}_{\mathrm{a}}=\frac{10 \mathrm{~V}}{5 \Omega}=2 \mathrm{~A}=\mathrm{i}_{1}-\mathrm{i}_{3}$

$$
\mathrm{i}_{1}=\mathrm{i}_{2}=-\frac{\mathrm{v}_{1}}{\mathrm{R}_{1}}
$$

But

$$
\begin{aligned}
& \beta \mathrm{v}_{1}+\mathrm{V}_{\mathrm{S} 1}+\mathrm{v}_{1}+\mathrm{V}_{\mathrm{S} 2}=0 \mathrm{~V} \\
& 4 \mathrm{v}_{1}+5 \mathrm{~V}+\mathrm{v}_{1}+-10 \mathrm{~V}=0 \mathrm{~V}
\end{aligned}
$$

or

$$
\begin{aligned}
& 5 \mathrm{v}_{1}=5 \mathrm{~V} \Rightarrow \mathrm{v}_{1}=1 \mathrm{~V} \\
& \therefore \quad \mathrm{i}_{1}=-\frac{1 \mathrm{~V}}{1 \Omega}=-1 \mathrm{~A}, \quad \mathrm{i}_{2}=-1 \mathrm{~A} \\
& \mathrm{i}_{3}=\mathrm{i}_{1}-\mathrm{i}_{\mathrm{a}}=-1-2=-3 \mathrm{~A}
\end{aligned}
$$

Plug into equations from (c)
1)

$$
\begin{aligned}
\mathrm{V}_{\mathrm{S} 1} & -\mathrm{i}_{1} \mathrm{R}_{1}-\left(\mathrm{i}_{1}-\mathrm{i}_{3}\right) \mathrm{R}_{2}-\left(\mathrm{i}_{2}-\mathrm{i}_{3}\right) \mathrm{R}_{3}-\beta \mathrm{i}_{1} \mathrm{R}_{1} \\
& =5-(-1) \cdot 1-(-1--3) \cdot 2-(-1--3) \cdot 3-4 \cdot(-1) \cdot 1 \\
& =5+1-4-6+4=0 \mathrm{~V}
\end{aligned}
$$

2)

$$
\begin{aligned}
\mathrm{V}_{\mathrm{S} 2} & -\left(\mathrm{i}_{3}-\mathrm{i}_{2}\right) \mathrm{R}_{3}-\left(\mathrm{i}_{3}-\mathrm{i}_{1}\right) \mathrm{R}_{2} \\
& =-10-(-3--1) \cdot 3-(-3--1) \cdot 2 \\
& =-10+6+4=0 \mathrm{~V}
\end{aligned}
$$

3)

$$
\mathrm{i}_{\mathrm{s}}=0, \quad \mathrm{i}_{1}-\mathrm{i}_{2}=-1--1=0=\mathrm{i}_{\mathrm{s}}
$$

Note: We have to be very careful about consistency checks that change the circuit topology. One helpful fact is that if a mesh loop has one side that is on the edge of the circuit diagram-so only one mesh current flows in it-then we are safe in saying the current in that component is equal to that mesh loop current. Thus, we look for components on the perimeter of the circuit when we do consistency checks.

