3.

Calculate the power furnished or absorbed by the 30 V voltage source, and state whether it is furnished or absorbed.

Solution:

Because there are several current sources, the node-V method is a good choice here. For node v_{1} :

$$
\frac{\mathrm{v}_{1}-30 \mathrm{~V}}{5 \Omega}+\frac{\mathrm{v}_{1}}{10 \Omega}-2 \mathrm{i}_{\mathrm{x}}+1 \mathrm{~A}=0 \mathrm{~A}
$$

Our constraint equation: $i_{x}=-\frac{v_{1}}{10 \Omega}$. Substitute this into the node v_{1} equation:

$$
\frac{\mathrm{v}_{1}-30 \mathrm{~V}}{5 \Omega}+\frac{\mathrm{v}_{1}}{10 \Omega}+\frac{2 \mathrm{v}_{1}}{10 \Omega}+1 \mathrm{~A}=0 \mathrm{~A}
$$

or

$$
\mathrm{v}_{1}\left(\frac{1}{5 \Omega}+\frac{3}{10 \Omega}\right)=\frac{30 \mathrm{~V}}{5 \Omega}-1 \mathrm{~A}=5 \mathrm{~A}
$$

or

$$
\mathrm{v}_{1}=5 \mathrm{~A} \cdot 5 \Omega\left\|\frac{10}{3} \Omega=5 \mathrm{~A} \cdot 5 \Omega \cdot 1\right\| \frac{2}{3}
$$

or

$$
\mathrm{v}_{1}=25 \mathrm{~V} \cdot \frac{2 / 3}{5 / 3}=10 \mathrm{~V}
$$

Current i flowing from + to - in 30 V source:

$$
\mathrm{i}=\frac{\mathrm{v}_{1}-30 \mathrm{~V}}{5 \Omega}=\frac{10 \mathrm{~V}-30 \mathrm{~V}}{5 \Omega}=-\frac{20 \mathrm{~V}}{5 \Omega}=-4 \mathrm{~A}
$$

Power $=\mathrm{i} \cdot \mathrm{v}=-4 \mathrm{~A} \cdot 30 \mathrm{~V}=-120 \mathrm{~W}<0 \Rightarrow$ pwr furnished Power 120 W furnished (or delivered)

Check: Calculate all i's and v's and verify Kirchhoff's laws.

All sums of currents out of nodes $=0 \mathrm{~A}$
All sums of V-drops around loops $=0 \mathrm{~V}$

