UNIT 3 PRACTICE EXAM

1. (30 points)

After being closed for a long time, the switch is <u>opened</u> at t = 0.

- a. Write a numerical expression for i(t), t > 0.
- b. Calculate the energy stored in the capacitor at $t = 0^+$.
- c. Calculate the energy stored in the capacitor as $t \rightarrow \infty$.

2. (25 points)

After being closed for a long time, the switch is <u>opened</u> at t = 0.

- a. Write an expression for $v_1(t)$, t > 0.
- b. Make one consistency check (other than units) on your answer.

3. (20 points)

- a. Calculate the value of R_L that would absorb maximum power.
- b. Calculate that value of maximum power $R_{\mbox{\scriptsize L}}$ could absorb.

4. (25 points)

Using superposition, derive an expression for v_3 that contains no circuit quantities other than i_s, v_s, R_1, R_2 , and β .