1. (30 points)

After being closed for a long time, the switch is opened at $\mathrm{t}=0$.
a. Write a numerical expression for $\mathrm{i}(\mathrm{t}), \mathrm{t}>0$.
b. Calculate the energy stored in the capacitor at $\mathrm{t}=0^{+}$.
c. Calculate the energy stored in the capacitor as $t \rightarrow \infty$.
2. (25 points)

After being closed for a long time, the switch is opened at $t=0$.
a. Write an expression for $\mathrm{v}_{1}(\mathrm{t}), \mathrm{t}>0$.
b. Make one consistency check (other than units) on your answer.
3. (20 points)

a. Calculate the value of R_{L} that would absorb maximum power.
b. Calculate that value of maximum power R_{L} could absorb.
4. (25 points)

Using superposition, derive an expression for v_{3} that contains no circuit quantities other than $\mathrm{i}_{\mathrm{s}}, \mathrm{v}_{\mathrm{s}}, \mathrm{R}_{1}, \mathrm{R}_{2}$, and β.

