UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT

1.

Design an electronic thermometer using the circuit diagram shown above. The voltage v_{O} is used to indicate temperature. Use a thermister with a resistance described by

$$
\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{\mathrm{o}} \mathrm{e}^{\beta\left(\frac{1}{\mathrm{~T}}-\frac{1}{300}\right)}
$$

where $\mathrm{R}_{\mathrm{o}}=12.25 \mathrm{k} \Omega, \beta=170^{\circ} \mathrm{K}$, and T is temperature in ${ }^{\circ} \mathrm{K}$. Derive a symbolic expression for v_{o}. The expression must contain not more than the parameters $\mathrm{i}_{\mathrm{S}}, \mathrm{V}_{\mathrm{S}}$, $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{T}. Hint: Use superposition.
2. a. Calculate the numerical values of $\mathrm{R}_{\mathrm{T}}\left(273^{\circ} \mathrm{K}\right)$ and $\mathrm{R}_{\mathrm{T}}\left(373^{\circ} \mathrm{K}\right)$.
b. Determine a value for v_{s} such that $\mathrm{v}_{\mathrm{o}}\left(\mathrm{T}=373^{\circ} \mathrm{K}\right)-\mathrm{v}_{\mathrm{o}}\left(\mathrm{T}=273^{\circ} \mathrm{K}\right)=1 \mathrm{~V}$
c. Using your answer to (c), determine a value of i_{s} such that

$$
\mathrm{v}_{\mathrm{O}}\left(\mathrm{~T}=273^{\circ} \mathrm{K}\right)=0 \mathrm{~V} .
$$

d. Using the component values you chose above, calculate v_{o} when $\mathrm{T}=$ $323^{\circ} \mathrm{K}$. Make a rough sketch of v_{O} vs. T on the basis of the values when $\mathrm{T}=$ $273^{\circ} \mathrm{K}, 323^{\circ} \mathrm{K}$, and $373^{\circ} \mathrm{K}$. On the same axes, sketch the ideal linear response.
3.

a. Find the Thevenin equivalent of the above circuit relative to terminals a and b.
b. If we attach R_{L} to terminals a and b, find the value of R_{L} that will absorb maximum power.
c. Calculate the value of that maximum power absorbed by R_{L}.
1.

Design an electronic thermometer using the circuit diagram shown above. The voltage v_{o} is used to indicate temperature. Use a thermister with a resistance described by

$$
\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{\mathrm{o}} \mathrm{e}^{\beta\left(\frac{1}{\mathrm{~T}}-\frac{1}{300}\right)}
$$

where $\mathrm{R}_{\mathrm{o}}=12.25 \mathrm{k} \Omega, \beta=170^{\circ} \mathrm{K}$, and T is temperature in ${ }^{\circ} \mathrm{K}$. Derive a symbolic expression for v_{o}. The expression must contain not more than the parameters $\mathrm{i}_{\mathrm{s}}, \mathrm{V}_{\mathrm{s}}$, $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{T}. Hint: Use superposition.
2. a. Calculate the numerical values of $\mathrm{R}_{\mathrm{T}}\left(273^{\circ} \mathrm{K}\right)$ and $\mathrm{R}_{\mathrm{T}}\left(373^{\circ} \mathrm{K}\right)$.
b. Determine a value for v_{s} such that $v_{0}\left(T=373^{\circ} \mathrm{K}\right)-v_{0}\left(T=273^{\circ} \mathrm{K}\right)=1 \mathrm{~V}$
c. Using your answer to (c), determine a value of i_{s} such that

$$
\mathrm{v}_{\mathrm{O}}\left(\mathrm{~T}=273^{\circ} \mathrm{K}\right)=0 \mathrm{~V}
$$

d. Using the component values you chose above, calculate v_{o} when $\mathrm{T}=$ $323^{\circ} \mathrm{K}$. Make a rough sketch of v_{O} vs. T on the basis of the values when $\mathrm{T}=$ $273^{\circ} \mathrm{K}, 323^{\circ} \mathrm{K}$, and $373^{\circ} \mathrm{K}$. On the same axes, sketch the ideal linear response.
solon: 1.

Find v_{p} :

$$
\begin{aligned}
& \quad v_{p}=v_{s} \frac{R_{2}}{R_{2}+R_{T}} \\
& v_{n}=v_{P}
\end{aligned}
$$

Find i_{f} on left: $i_{f}=i_{s}$
Find i_{f} on right: $i_{f}=\frac{v_{h}-v_{0}}{R_{1}}$
Set if's equal and use $v_{n}=v_{p}$

$$
\begin{aligned}
& i_{5}=\frac{v_{n}-v_{0}}{R_{1}} \text { or } v_{0}=v_{n}-i_{5} R_{1} \\
& V_{0}=V_{5} \frac{R_{2}}{R_{2}+R_{T}}-i_{5} R_{1} \\
& \text { 2. 9) } \quad R_{T}\left(273^{\circ} \mathrm{K}\right)=12.25 \mathrm{k} \Omega \cdot e^{170^{\circ} \mathrm{K}}\left(\frac{1}{273^{\circ} \mathrm{K}}-\frac{1}{300^{\circ} \mathrm{K}}\right)=13 \mathrm{k} \Omega \\
& R_{T}\left(373^{\circ} \mathrm{K}\right)=12.25 \mathrm{k} \Omega \cdot e^{170^{\circ} \mathrm{K}\left(\frac{1}{373^{\circ} \mathrm{K}}-\frac{1}{300^{\circ} \mathrm{K}}\right)=11 \mathrm{~K} \Omega} \\
& R_{T}\left(273^{\circ} \mathrm{K}\right)=13 \mathrm{~K} \Omega \\
& R_{T}\left(373^{\circ} \mathrm{K}\right)=11 \mathrm{k} \Omega
\end{aligned}
$$

b)

$$
\begin{aligned}
W=V_{0}\left(373^{\circ} \mathrm{K}\right)-v_{0}\left(273^{\circ} \mathrm{K}\right)= & v_{S} \frac{R_{2}}{\left.R_{2}+R_{T(3730} \mathrm{K}\right)}-i_{S} R_{1} \\
& -\left(v_{5} \frac{R_{2}}{R_{2}+R_{T}\left(273^{\circ} \mathrm{K}\right)}-i_{\xi} R_{1}\right) \\
W & =v_{S} \cdot 11 \mathrm{k} \Omega \cdot\left(\frac{1}{11 \mathrm{k} \Omega+11 \mathrm{k} \Omega}-\frac{1}{11 \mathrm{k} \Omega+13 \mathrm{k} \Omega}\right) \\
V_{5}=\frac{1 V}{11 \mathrm{~K}} \frac{22 \mathrm{k} \Omega \cdot 24 \mathrm{k} \Omega}{24 \mathrm{k} \Omega-22 \mathrm{k} \Omega} & =24 \mathrm{~V}
\end{aligned}
$$

Sol'n: 2.c) $\quad O V=v_{0}\left(273^{\circ} \mathrm{K}\right)=V_{S} \frac{R_{2}}{R_{2}+R_{T}\left(273^{\circ} \mathrm{K}\right)}-i_{S} R_{1}$

$$
\begin{aligned}
i_{S} & =\frac{1}{R_{1}} v_{S} \frac{R_{2}}{R_{2}+R_{T}\left(273^{\circ} \mathrm{K}\right)}=\frac{1}{10 \mathrm{~K} \Omega} \cdot 24 \mathrm{~V} \cdot \frac{11 \mathrm{~K} \Omega}{11 \mathrm{~K} \Omega+13 \mathrm{~K} \Omega} \\
u & =\frac{11}{10 \mathrm{~K}} A=1.1 \mathrm{~mA} \\
i_{S} & =1.1 \mathrm{~mA}
\end{aligned}
$$

d)

$$
\begin{aligned}
& R_{T}\left(323^{\circ} \mathrm{K}\right)=12.25 \mathrm{k} \Omega \cdot \mathrm{e}^{170^{\circ} \mathrm{K}\left(\frac{1}{323^{\circ} \mathrm{K}}-\frac{1}{300^{\circ} \mathrm{K}}\right)}=11.8 \mathrm{~K} \Omega \\
& v_{0}\left(323^{\circ} \mathrm{K}\right)=24 \mathrm{~V} \frac{11 \mathrm{~K} \Omega}{11 \mathrm{k} \Omega+11.8 \mathrm{k} \Omega}-1.1 \mathrm{~mA} \cdot 10 \mathrm{~K} \Omega=0.58 \mathrm{~V}
\end{aligned}
$$

3.

a. Find the Thevenin equivalent of the above circuit relative to terminals a and b.
b. If we attach R_{L} to terminals a and b, find the value of R_{L} that will absorb maximum power.
c. Calculate the value of that maximum power absorbed by R_{L}.
sol in: 3.9)

$V_{T h}=V_{a b \text { open circuit }}$
$i_{x}=0$ for open circuit a, b. $\therefore 4 k-i{ }_{x}=O V$
No $i_{x} \Rightarrow$ no v drop across $10 \mathrm{k} \Omega \Rightarrow$ ignore $10 \mathrm{k} \Omega$

This is V-divider.

$$
\begin{aligned}
& V_{T h}=21 \mathrm{~V} \cdot \frac{2 \mathrm{k} \Omega}{2 \mathrm{k} \Omega+1 \mathrm{k} \Omega}=14 \mathrm{~V} \\
& V_{T h}=14 \mathrm{~V}
\end{aligned}
$$

To find $R_{T h}$ we can use the $i_{S C}$ method:

Find v_{1} by node-voltage method:
$i_{x}=\frac{v_{1}}{10 k \Omega}$ so we can eliminate i_{x}

$$
\frac{v_{1}-4 k \frac{v_{1}}{10 k \Omega}}{2 k \Omega}+\frac{v_{1}-21 v}{1 k \Omega}+\frac{v_{1}}{10 k \Omega}=O A
$$

mult everything by $10 \mathrm{~K} \Omega$

$$
\begin{aligned}
& v_{1} \cdot 5-v_{1} \cdot 2+v_{1} \cdot 10+v_{1} \cdot 1=210 \mathrm{~V} \\
& v_{1}(5-2+10+1)=210 \mathrm{~V} \quad v_{1} \cdot 14=210 \mathrm{~V} \quad v_{1}=15 \mathrm{~V} \\
& i_{S C}=i_{x}=\frac{v_{1}}{10 \mathrm{k} \Omega}=1.5 \mathrm{~mA} \quad R_{T h}=\frac{v_{T h}}{i_{S C}}=\frac{14 \mathrm{~V}}{1.5 \mathrm{~mA}} \\
& R_{T h}=9.33 \mathrm{k} \Omega
\end{aligned}
$$

sol'n: 3.6) max pur when $R_{L}=R_{T h}=9.33 \mathrm{k} \Omega$
c) \max pur $P_{\max }=\frac{V_{T h}^{2}}{4 R_{T h}}=\frac{(14 V)^{2}}{4 \cdot \frac{14}{1.5} \mathrm{k} \Omega}=\frac{14(1.5)}{4} \mathrm{~mW}$

$$
P_{\max }=\frac{21}{4} \mathrm{~mW}=5.25 \mathrm{~mW}
$$

UNIVERSITY OF UTAH
 ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT

ECE 1000
HOMEWORK \#10
Spring 2005
1.

Rail voltages $= \pm 12 \mathrm{~V}$
After being open for a long time, the switch closes at $t=t_{o}$.

a. Choose either an R or C to go in box a and either an R or C to go in box b to produce the $\mathrm{v}_{\mathrm{o}}(\mathrm{t})$ shown above. Specify which element goes in each box and its value. Hint: Use $\mathrm{v}_{2}(\mathrm{t} \rightarrow \infty)=1 \mathrm{~V}$
b. Sketch $\mathrm{v}_{1}(\mathrm{t})$, showing numerical values appropriately.
2. a. Sketch $\mathrm{v}_{2}(\mathrm{t})$, showing numerical values appropriately.
b. Sketch $v_{3}(t)$. Show numerical values for $t<t_{0}$, for $t_{0}<t<t_{0}+44 m s$, and for $\mathrm{t}_{\mathrm{o}}+44 \mathrm{~ms}<\mathrm{t}$. Use the ideal model of the diode: when forward biased, its resistance is zero; when reverse biased, its resistance is infinite.

Explain your work carefully.
3.

a. A frequency-domain circuit is shown above. Write the value of phasor \mathbf{I}_{1} in polar form.
b. Given $\omega=\pi \mathrm{rad} / \mathrm{s}$, write a numerical time-domain expression for $i_{1}(\mathrm{t})$, the inverse phasor of \mathbf{I}_{1}.
1.

After being open for a long time, the switch closes at $t=t_{0}$.

a. Choose either an R or C to go in box a and either an R or C to go in box b to produce the $v_{o}(t)$ shown above. Specify which element goes in each box and its value. Hint: Use $\mathrm{v}_{2}(\mathrm{t} \rightarrow \infty)=1 \mathrm{~V}$
b. Sketch $\mathrm{v}_{1}(\mathrm{t})$, showing numerical values appropriately.
2. a. Sketch $\mathrm{v}_{2}(\mathrm{t})$, showing numerical values appropriately.
b. Sketch $v_{3}(t)$. Show numerical values for $t<t_{0}$, for $t_{0}<t<t_{0}+44 \mathrm{~ms}$, and for $t_{0}+44 \mathrm{~ms}<\mathrm{t}$. Use the ideal model of the diode: when forward biased, its resistance is zero; when reverse biased, its resistance is infinite.

Explain your work carefully.
sol'n: 1.a) Consider possibilities.
$a=R$ and $b=R: v_{2}$ would change at time $t=t_{0}$ but never change again. Thus, vo could not go high and then low again.
$a=C_{1}$ and $b=C_{2}$: Before $t=t_{0}$, there would be no path for C_{2} in b to discharge. Thus, we would need to know $v_{C_{2}}\left(t=t_{0}^{-}\right)$.

We would also have $v_{C l}\left(t=t_{0}^{-}\right)=O V$ since C_{1} will discharge thru the R in parallel with it.
When the switch closes, we have an invalid circuit if $v_{\mathrm{Cl}_{2}}\left(t_{0}^{+}\right)+v_{c_{1}}\left(t_{0}{ }^{+}\right)$ $\neq 6.5 \mathrm{~V}$. This means we must have

$$
\begin{aligned}
& v_{c 2}\left(t_{0}^{+}\right)=v_{c}\left(t_{0}^{-}\right)=6.5 \mathrm{~V} \text { since } \\
& v_{c 1}\left(t_{0}+\right)=v_{c}\left(t_{0}^{-}\right)=0 \mathrm{~V} .
\end{aligned}
$$

But if $v_{\mathrm{C2}}\left(t_{0}+\right)=6.5$, nothing changes when the switch closes. Thus, we could not get a waveform that goes high and then low again.
$a=R$ and $b=C: \quad A s$ in the case of $a=C_{1}$ and $b=C_{2}$, we would have some value of $v_{c}\left(t_{0}{ }^{-}\right)$ $=v_{c}\left(t_{0}{ }^{+}\right)$. Since $v_{2}=v_{c}\left(t_{0}^{+}\right)$at $t=t_{0}{ }^{+}$, v_{0} would not change at t_{0}. Thus, this will not work.
$a=C$ and $b=R$: The C in a will discharge thru the R in parallel with it. $\therefore V_{C}\left(t_{0}-\right)=O V$. Also, no current flows in R for $t<t_{0}$ because there is no closed circuit path in which current could flow.
Thus, $\quad V_{2}\left(t_{0}{ }^{-}\right)=i \cdot R=O V$.
sol'n: 1.a) cont.

At $t=t_{0}^{+}$, we have $v_{2}\left(t_{0}^{+}\right)=6.5 v-v_{c}\left(t_{0}^{+}\right)$ or $v_{2}\left(t_{0}^{+}\right)=6.5 \mathrm{~V}$ since $v_{c}\left(t_{0}^{+}\right)=v_{c}\left(t_{0}^{-}\right)=$ov.

Thus, v_{2} jumps from of to 6.5 V at t_{0}.
If $v_{2}\left(t_{0}+\right)>v_{1}$, then v_{0} would go high, (assuming $v_{1}>0 \mathrm{~V}$ and $v_{1}<6.5 \mathrm{~V}$).

After to, C will charge and v_{2} will start to drop. If v_{2} eventually drops below v_{1}, then v_{0} will go low again. Thus, this will work.

Now find values of R and C :
V_{1} : Since no current flows into the - input of the op amp, no current flows thru the $20 k \Omega$ resistor (lower (eft).

Combining the parallel current sources, we have $40 \mu A-25 \mu A=15 \mu A$. This current flows thru the $100 \mathrm{k} \Omega$ to produce voltage

$$
\begin{aligned}
& 15 \mu A \cdot 100 \mathrm{k} \Omega=1.5 \mathrm{~V} \\
& \therefore v_{1}=2.5 v \quad(\text { constant })
\end{aligned}
$$

v_{2} : For $t>t_{0}$, we use a Thevenin equivalent circuit for the 6.5 V source, the $/ 1 K \Omega$, and R in 6 .

$$
v_{2} \xrightarrow{C+} R_{T h}=R\| \| \mathrm{k} \Omega
$$

sol'n: (1.a) cont. We use the general RC sol'n for $v_{2}(t)$: $v_{2}(t)=v_{2}(t \rightarrow \infty)+\left[v_{2}\left(t_{0}^{+}\right)-v_{2}(t \rightarrow \infty)\right] e^{-t / R_{T h} C}$

To find $v_{2}(t \rightarrow \infty)$, we observed that, when C is charged, no current flows in $R_{\text {Th }}$.
Thus $V_{2}(t \rightarrow \infty)=V_{T A}=6.5 \mathrm{~V} \frac{R}{R+11 \mathrm{k} \Omega}<6.5 \mathrm{~V}$.
From earlier, $v_{2}\left(t_{0} t\right)=6.5 \mathrm{~V}$.

Any $V_{T h}<V_{1}$ will suffice. For convenience,
Let $\quad V_{T h}=1 \mathrm{~V}=6.5 \mathrm{~V} \cdot \frac{R}{R+11 \mathrm{k} \Omega} \Rightarrow R=2 \mathrm{k} \Omega$
Assume $t_{0}=0$. For $v_{0} t_{0}$ switch at $t=44 \mathrm{~ms}$,
we have $v_{2}(44 \mathrm{~ms})=v_{1}=1.5 \mathrm{v}$
or $\quad l v+[6.5 v-N]^{-44 m S / R_{T h} C}=0.5 v$
or $5.5 \mathrm{ve}^{-44 \mathrm{~ms} / R_{T h} C}=0.5 \mathrm{~V}$
$R_{T h}=R\|11 \mathrm{k} \Omega=2 \mathrm{k}\| 11 \mathrm{k} \Omega=\frac{22}{13} \mathrm{k} \Omega$.
Take $l n$ of both sides of exponential RC egin:

$$
\begin{aligned}
& -\frac{4^{2} \mathrm{~ms}}{\frac{22}{13} \mathrm{k} \Omega \cdot \mathrm{C}}=\operatorname{bn} \frac{0.5 \mathrm{~V}}{5.5 \mathrm{~V}} \doteq-2.39 \\
& C=\frac{2}{\frac{2.39}{13}} \mu \mathrm{~F}=10.9 \mu \mathrm{~F} \quad C=11 \mu \mathrm{~F}
\end{aligned}
$$

solis: 1.b) $\quad v_{1}(t)=1.5 \mathrm{~V}$ constant

2.9)

Note: $R_{\text {Th }} C=\frac{22}{13} \mathrm{k} \Omega \cdot 20 \mu \mathrm{~F} \doteq 33.8 \mathrm{~ms}$
Note: Assume $t_{0}=0$.
b) When $v_{0}=+12 V$, top diode is reverse biased $=$ open.

The bottom diode is forward biased $=$ wire.

when $v_{0}=-12 v$, top diode is forward biased $=$ wire.
Thus, v_{0} is shorted to $-12 V$.

3.

a. A frequency-domain circuit is shown above. Write the value of phasor \mathbf{I}_{1} in polar form.
b. Given $\omega=\pi \mathrm{rad} / \mathrm{s}$, write a numerical time-domain expression for $i_{1}(\mathrm{t})$, the inverse phasor of \mathbf{I}_{1}.
sol'n: 3.a) The $-j 3 k \Omega$ and $j 3 k \Omega$ sum to zero and act like a wire. Thus, they do not affect \mathbb{I}_{x}.
So we have:

Clearly, $\frac{1}{2} \mathbb{I}_{x}$ flows thru the $4 \mathrm{k} \Omega$ (for sum of currents at node above $4 \mathrm{ke}=0$).

But the current thru $4 \mathrm{k} \Omega$ is $\frac{51 \angle 90^{\circ} \mathrm{V}-68 \angle 0^{\circ} \mathrm{V}}{4 \mathrm{k} \Omega}$

$$
\text { or } \frac{1}{2} \mathbb{I}_{x}=\mathbb{I}_{1}=\frac{17 \cdot 3 \angle 90^{\circ}-17 \cdot 4<0^{\circ} \mathrm{V}}{4 \mathrm{k} \Omega}
$$

$$
\begin{aligned}
& \mathbb{I}_{1}=17 \frac{j 3-4}{4 k \Omega}=\frac{17}{4}(-4+j 3)=\frac{17}{4} \cdot 5 \mathrm{~V}<147^{\circ} \\
& \mathbb{I}_{1}=-17+j 12.75 \mathrm{~mA}=21.25<149^{\circ} \mathrm{mA}
\end{aligned}
$$

b)

$$
\begin{aligned}
i_{1}(t) & =17 \cos \left(\pi t+180^{\circ}\right)-12.75 \sin (\pi t) \mathrm{mA} \\
11 & =21.25 \cos \left(\pi t+147^{\circ}\right) \mathrm{mA}
\end{aligned}
$$

