m
UniVERSITY
Of UTAH

a) The above circuit operates in linear mode. Derive a symbolic expression for v_{0}. The expression must contain not more than the parameters $i_{\mathrm{s} 1}, i_{\mathrm{s} 2}, R_{1}, R_{2}$, and R_{3}.
b) If $i_{\mathrm{s} 1}=0 \mu \mathrm{~A}$, find the value of R_{3} that will yield an output voltage of $v_{\mathrm{o}}=1 \mathrm{~V}$ when $i_{\mathrm{s} 2}=10 \mu \mathrm{~A}$.
c) Derive a symbolic expression for v_{o} in terms of common mode and differential input currents:

$$
i_{\Sigma} \equiv \frac{i_{s 1}+i_{s 2}}{2} \quad \text { and } \quad i_{\Delta} \equiv \frac{i_{S 1}-i_{s 2}}{2}
$$

The expression must contain not more than the parameters $i_{\Sigma}, i_{\Delta}, R_{1}, R_{2}$, and R_{3}. Write the expression as i_{Σ} times a term plus i_{Δ} times a term. Hint: start by writing $i_{\mathrm{s} 1}$ and $i_{\mathrm{s} 2}$ in terms of i_{Σ} and i_{Δ} :

$$
i_{s 1} \equiv i_{\Sigma}+i_{\Delta} \quad \text { and } \quad i_{s 2} \equiv i_{\Sigma}-i_{\Delta}
$$

d) If $i_{\Delta}=0$ and $R_{1}=R_{2}$, write a formula for the current flowing from left to right in R_{3} as a function of not more (and possibly less) than the following terms: i_{Σ}, R_{1}, R_{2}, and R_{3}.

sol'n: a) First, we find v_{p} (voltage at + input):

$$
v_{p}=i_{s 2} R_{2}
$$

Second, we find the current flowing toward the - input from the left ${ }_{j}$ using v_{n} (voltage at - input) $=v_{p}=$

$$
i_{l}=i_{s 1}-\frac{v_{n}}{R_{1}}=i_{s 1}-\frac{i_{s 2} R_{2}}{R_{1}}
$$

Third, we find the current flowing in the feedback resistor, R_{3}, from left to right =

$$
i_{r}=\frac{v_{n}-v_{0}}{R_{3}}=\frac{i_{s 2} R_{2}-v_{0}}{R_{3}}
$$

Fourth, we set $i_{r}=i_{l}$ and solve for $V_{0}=$

$$
i_{s 1}-\frac{i_{s 2} R_{2}}{R_{1}}=\frac{i_{s 2} R_{2}-v_{0}}{R_{3}}
$$

or

$$
V_{0}=-i_{s 1} R_{3}+i_{s 2} R_{2}\left(1+\frac{R_{3}}{R_{1}}\right)
$$

b)

$$
\begin{aligned}
& I V=10 \mu A-2 k \Omega\left(1+\frac{R_{3}}{2 k \Omega}\right)=20 \mathrm{mV}\left(1+\frac{R_{3}}{2 k \Omega}\right) \\
& \therefore 1+\frac{R_{3}}{2 k \Omega}=50 \quad \text { or } \quad \frac{R_{3}}{2 k}=49 \\
& \text { or } R_{3}=98 \mathrm{k} \Omega
\end{aligned}
$$

d) $\quad v_{0}=-\left(i_{\Sigma}+i_{\Delta}\right) R_{3}+\left(i_{\Sigma}-i_{\Delta}\right) R_{2}\left(1+\frac{R_{3}}{R_{1}}\right)$
or

$$
\begin{aligned}
v_{0} & =i_{\Sigma}\left(R_{2}+\frac{R_{2} R_{3}}{R_{1}}-R_{3}\right) \\
& -i_{\Delta}\left(R_{2}+\frac{R_{2} R_{3}}{R_{1}}+R_{3}\right)
\end{aligned}
$$

d) For $i_{\Delta}=0$ and $R_{1}=R_{2}$, we have

$$
\begin{aligned}
v_{0} & =i_{\Sigma}\left(R_{2}+R / 3-R_{3}\right) \\
\text { or } v_{0} & =i_{\Sigma} R_{2} \\
\text { Then } i_{R 3} & =\frac{v_{n}-v_{0}}{R_{3}}=\frac{v_{n}-i_{\Sigma} R_{2}}{R_{3}}
\end{aligned}
$$

$$
\begin{aligned}
\text { But } v_{n}=v_{p}=i_{\$ 2} R_{2} & =\frac{i_{s 1}+i_{s 2}}{2} R_{2} \\
\text { (since } i_{s 1}=i_{s 2} \text {) } & =i_{\xi} R_{2}
\end{aligned}
$$

Then $i_{R 3}=\frac{i_{\Sigma} R_{2}-i_{\varepsilon} R_{2}}{R_{3}}=O A$
Note= When $i_{s 1}=i_{s 2}$, the current in R_{1} and R_{2} is the same (since $\nu_{n}=v_{p}$), so there is no current left over
to flow in R_{3}.

```
튿ㅌ 1270
```

Ex:

$$
I=15-V_{x}=15-I(1)
$$

a) Find the Thevenin equivalent of the above circuit relative to terminals \mathbf{a} and \mathbf{b}.
b) If we attach R_{L} to terminals \mathbf{a} and \mathbf{b}, find the value of R_{L} that will absorb maximum power.
c) Calculate the value of that maximum power absorbed by R_{L}.
sol'n: a) $\quad v_{T h}=v_{a, b}$ with nothing connected across a, b
One approach is to use the node-voltage method:

Using the voltage-divider formula, we relate v_{x} to $v_{1}=$

$$
v_{x}=v_{1} \cdot \frac{1 \Omega}{1 \Omega+2 \Omega}=\frac{v_{1}}{3}
$$

Node V_{1} eq'n:

$$
\frac{V_{1}}{3}-15 A+\frac{V_{1}}{1 \Omega+2 \Omega}=O A
$$

or $\frac{2 v_{1}}{3 \Omega}=15 \mathrm{~A}$
or $V_{1}=\frac{3}{2} \Omega \cdot 15 \mathrm{~A}=22.5 \mathrm{~V}$
To find $V_{T h}$, we again useavoltage-divider formula:

$$
V_{T h}=V_{1} \cdot \frac{2 \Omega}{1 \Omega+2 \Omega}=22.5 \mathrm{~V} \cdot \frac{2}{3}=15 \mathrm{~V}
$$

Note: Another approach is to replace the dependent source with a resistor, To do so, we write the voltage across the dependent source in terms of dependent variable v_{x}. From an eq'n above, we have $v_{1}=3 v_{x}$.

Note: Req changes with R across a, b.

One way to find $R_{T h}$ is to use

$$
R_{T h}=\frac{v_{T h}}{i_{s c}}
$$

where $i_{\text {sc }} \equiv$ short circuit from a to b

We may ignore the 2Ω resistor that is shorted out.

Node v_{1} eq'n: (Note that $v_{x}=v_{1}$.)

$$
v_{1}-15 A+\frac{v_{1}}{1 \Omega}=O A
$$

or

$$
\frac{2 v_{1}}{1 \Omega}=15 \mathrm{~A}
$$

or

$$
v_{1}=15 \mathrm{~A} \cdot \frac{1 \Omega}{2}=7.5 \mathrm{~V}
$$

our current is $i_{s c}=\frac{v_{1}}{1 \Omega}=\frac{7.5 \mathrm{~V}}{1 \Omega}=7.5 \mathrm{~A}$.

$$
R_{T h}=\frac{V_{T h}}{L_{S C}}=\frac{15 \mathrm{~V}}{7,5 \mathrm{~A}}=2 \Omega
$$

Note: we could replace the dependent

$$
\text { source with } \operatorname{Req}=\frac{v}{i}=\frac{v_{x}}{v_{x}}=1 \Omega \text { for } i_{s c c} \text {. }
$$

$$
\begin{aligned}
& \text { b) } R_{L}=R_{T h}=2 \Omega \text { for max pwr xfer } \\
& \text { c) } P_{\max }=\frac{V_{T h}^{2}}{4 R_{T h}}=\frac{15^{2}}{4 \cdot 2 \Omega}=28.125 \mathrm{~W} \\
& 2 \Omega \\
& P=I^{2} R=\left(\frac{15}{4}\right)^{2} \cdot 2
\end{aligned}
$$

ㅌㄷㅌ 1270

U
UniVERSITY
Of UTAH

After being open for a long time, the switch closes at time $t=t_{0}$.
Rail voltages $= \pm 10 \mathrm{~V}$

a) Choose either an R or L to go in box a and either an R or L to go in box \mathbf{b} to produce the $v_{\mathrm{o}}(\mathrm{t})$ shown above. (You will need one R and one L. Use an R value of $1.3 \mathrm{k} \Omega$. Also, note that v_{o} stays low forever after $\mathrm{t}_{\mathrm{o}}+16 \mu \mathrm{~s}$.) Specify which element goes in each box and its value.
b) Sketch $v_{1}(t)$, showing numerical values appropriately.
c) Sketch $v_{2}(t)$, showing numerical values appropriately.
d) Sketch $v_{3}(t)$. Show numerical values for $t<t_{\mathrm{o}}$, for $t_{\mathrm{O}}<t<t_{\mathrm{O}}+16 \mu \mathrm{~s}$, and for $t>t_{\mathrm{o}}+16 \mu \mathrm{~s}$. Use the ideal model of the diode: when forward biased, its resistance is zero; when reverse biased, its resistance is infinite.
sol'n: a) We first find v_{1}, which is constant. The $1 \mathrm{k} \Omega$ resistor and 2 mA source are adross the 6 V source. Because they are across the 6 V source, they may be ignored. $v_{1}=6 \mathrm{~V}$ regardless of what is across the 6 V source.

$$
v_{1}=6 \mathrm{~V}
$$

For boxes \mathbf{a} and \mathbf{b}, we observe that, if we had an L in \boldsymbol{b}, that L will act like a wire at $t=0^{-}$. This would make $v_{2}\left(0^{-}\right)=o V$. The op-amp acts like a comparator, with the output equal to $\pm 10 \mathrm{~V}$ according to the sign of $v_{2}-v_{1}$. For $v_{2}=0 \mathrm{~V}$ and $v_{1}=6 \mathrm{~V}$ we would have $v_{2}-v_{1}=0-6 V=-6 V$ and $v_{0}=-10 \mathrm{~V}$ at $t=0^{-}$. This differs from the plot of $v_{0}(t)$ given in the problem statement. Thus, b must contain an R rather than an L.

Because the output voltage, $v_{0}(t)$, changes $16 \mu s$ after the switch moves, box a must contain an L to give the circuit a time-varying behavior.

$$
a=L
$$

$$
b=R=1.3 k \text { (from prob statement) }
$$

At $t=0^{-}$, we have the following equivalent circuit:

This is a voltage divider.

$$
v_{2}\left(0^{-}\right)=10 \mathrm{~V} \cdot \frac{1.3 \mathrm{k} \Omega}{1.3 \mathrm{k} \Omega+700 \Omega}=6.5 \mathrm{~V}
$$

We note that $v_{2}\left(0^{-}\right)=6.5>v_{1}\left(0^{-}\right)=6 \mathrm{~V}$ and $V_{2}-V_{1}=6.5-6 \mathrm{~V}=0.5 \mathrm{~V}>0 \mathrm{~V}$ so $v_{0}\left(0^{-}\right)=+10 \mathrm{~V}$, as desired.

At $t=0^{\dagger}$, we have the following equivalent circuit:

At $t=0^{+}, v_{2}-v_{1}=6.5 v-6 v=0.5 v>0 v$ so $v_{0}\left(0^{+}\right)=+10 \mathrm{~V}$, as desired.

As $t \rightarrow \infty$, we have the following equivalent circuit:

$v_{2}=0+(65-0) e^{-t / \pi}$

Since there is

The time constant of the circuit is

$$
\tau=\frac{L}{R_{T h}}=\frac{L}{1.3 \mathrm{k} \Omega}
$$

Using the general form of solution for RL circuits, we write an expression for $v_{2}(t>0)=$

$$
v_{2}(t>0)=v_{2}(t \rightarrow \infty)+\left[v_{2}\left(0^{+}\right)-v_{2}(t \rightarrow \infty)\right] e^{-t / \tau}
$$

or $V_{2}(t>0)=O V+[6.5 V-0 V] e^{-t / \tau}$
or $v_{2}(t>0)=6.5 V e^{-t / \tau}$
The op-amp output switches from high
to low when $v_{2}(t)=v_{1}=6 \mathrm{~V}$, which must occur at $t=t_{0}+16 \mu s$,
setting $t_{0}=0$, we solve for L in

$$
v_{1}=v_{2} \text { at } t=16 \mu s .
$$

$$
6 V=6.5 V e^{-16 \mu s / \tau}
$$

or $\ln (6 / 6.5)=-16 \mu s / \tau$

$$
\text { or } \begin{aligned}
\tau= & \frac{-16 \mu \mathrm{~s}}{\ln (6 / 6.5)} \doteq 200 \mu \mathrm{~s} \\
L & =\tau \cdot R_{\mathrm{Th}}=200 \mu \mathrm{~s} \cdot 1.3 \mathrm{k} \Omega=260 \mathrm{mH} \\
& \begin{array}{l}
R=1.3 \mathrm{k} \Omega \\
L
\end{array}=260 \mathrm{mH}
\end{aligned}
$$

b) From above, $v_{1}(t)=6 \mathrm{~V}$ at all times

c) From above, $V_{2}\left(0^{-}\right)=6.5 \mathrm{~V}$ and

$$
v_{2}(t>0)=6.5 \mathrm{e}^{-t / 200 \mu s} v
$$

$$
\text { Also, } v_{2}(t=16 \mu \mathrm{~s})=v_{1}=6 \mathrm{~V}
$$

d) When $v_{0}=+10 \mathrm{~V}$, the equivalent circuit on the right side is as follows:

We have a voltage divider: $v_{3}=\frac{10 V-2 k \Omega}{2 k \Omega+3 k \Omega}$

$$
v_{3}=4 V
$$

When $v_{0}=-10 \mathrm{v}$, the equivalent circuit on the right side is as follows:

Since we have
a short across
$v_{3}, V_{3}=O V$.

트드 1270

HOMEWORK \#18 solution

Ex:

a) A frequency-domain circuit is shown above. Write the value of phasor voltage \mathbf{V}_{1} in rectangular form.
b) Given $\omega=500 \mathrm{rad} / \mathrm{s}$, write a numerical time-domain expression for $v_{1}(t)$, the inverse phasor of \mathbf{V}_{1}.
sol'n: a) The dependent-source voltage cancels out the voltage across the $3 \mathrm{k} \Omega$ resistor, yielding the equivalent of a wire, (ie. OV).

We may also ignore the bottom part of the circuit, which is shorted out by the middle wire.

Thus far, we have the following circuit:

Now we observe that the $j 2 k \Omega$
and $-j 2 k \Omega$ in parallel are equivalent
to an open circuit:

$$
j 2 k \Omega\|-j 2 k \Omega=j 2 k \Omega \cdot 1\|-1=j 2 k \Omega \cdot \frac{-1}{0}=\infty \Omega
$$

Thus, the L and C disappear:

Now we use Ohm's Law:

$$
V_{1}=(1+j) m A \cdot 2 k \Omega=2+j 2 v
$$

b) In polar form, $V_{1}=\frac{2 \sqrt{2}}{\sqrt{2}}<\frac{45^{\circ}}{}{ }^{\circ} \mathrm{V}$

In the time domain, we have $\frac{\tan ^{-1}\left(\frac{2}{2}\right)}{\sqrt{2}^{2}+2^{2}}$

$$
v_{1}(t)=2 \sqrt{2} \cos \left(500 t+45^{\circ}\right) V
$$

Note: We could also directly take the inverse phapor of $2+j 2 v=$
$v_{1}(t)=2 \cos (500 t)-2 \sin (500 t) \quad v$

Ex:

Rail voltage $= \pm 9 \mathrm{~V}$
a) The above circuit operates in linear mode. Derive a symbolic expression for v_{0}. The expression must contain not more than the parameters $i_{\mathrm{s}}, v_{\mathrm{s}}, R_{1}, R_{2}$, and R_{3}.
b) If $\mathrm{v}_{\mathrm{S}}=0 \mathrm{~V}$, find the value of R_{2} that will yield an output voltage of $\mathrm{v}_{\mathrm{O}}=1 \mathrm{~V}$ when $i_{s}=1 \mathrm{~mA}$.
c) Using the value of R_{2} from part (a), find the value of v_{S} that will yield $v_{\mathrm{O}}=1 \mathrm{~V}$ when $i_{\mathrm{s}}=0 \mathrm{~A}$.
d) Using the value of R_{2} from part (a), calculate the input resistance, $R_{\text {in }}=v_{1} / i_{\mathrm{s}}$, seen by the i_{S} source.

Sol'n: a) First, we find the voltage, v, at the t input of the op-omp.
$v_{1}=i_{-2} * R_{1} \|_{\|} X_{2}$

Second, we assume the voltage, v_{n}, at the - input of the op-amp $=V$.

$$
v_{n}=i_{5} \cdot R_{1} \| R_{2}
$$

Third, we find the value of v_{0} that yields the above value of v_{n}.

Since no current flows into the op-amp inputs; ho current flows in R_{3}, and R_{3} has no voltage drop.

$$
\therefore \quad v_{0}=v_{n}-v_{g}
$$

$$
\text { or } \quad v_{0}=i_{s} \cdot R_{1} \| R_{2}-v_{s}
$$

b) Given $v_{s}=o V$ and $i_{s}=1 \mathrm{~mA}$ we are to find the value of \vec{R}_{2} that yields $v_{o}=1 V$.

Using the expression in (a) for v_{0} we have

$$
i V=1 \mathrm{~mA} \cdot 2 \mathrm{k} \boldsymbol{L}\| \|_{2}-O V
$$

or $\quad 2 k a \| R_{2}=1 \mathrm{k} \Omega$
or $R_{2}=2 k \Omega$
c) We have $\quad V=O A \cdot 2 k-I+2 k+\frac{1}{2}-v_{S}$ or $\quad v_{s}=-1 v$
d) From part (a), we have the following:

$$
\begin{aligned}
& v_{1}=i_{5} \cdot R_{1}:\left\{R_{2}\right. \\
& R_{i n}=\frac{v_{1}}{i_{5}}=R_{1} \| R_{2}=1 k_{2}
\end{aligned}
$$

HOMEWORK \#17 solution

Ex:

a) Find the Thevenin equivalent of the above circuit relative to terminals \mathbf{a} and \mathbf{b}.
b) If we attach R_{L} to terminals a and \mathbf{b}, find the value of R_{L} that will absorb maximum power.
c) Calculate the value of that maximum power absorbed by R_{L}.
sol'n: a) $V_{T h}=V_{r i, b}$ no load
With nothing connected from a to b, $i_{x}=0$ and $50 i_{x}=0 \mathrm{~V}$ acts like a wire
$5 * \Omega$

Since $i_{x}=0$, there is no v-drop across the $5 k \Omega$ resistor. An outer voltage loop reveals that $v_{\text {Th }}=10 \mathrm{~V}$.

Because we have a dependent source, we can find $R_{T h}$ using the formula

$$
R_{T h}=\frac{V_{T h}}{E_{\text {SC }}}
$$

Although we have a dependent source, the bol source between the top and bottom rails makes the $56 i_{x}$ and $3 k \Omega$ components irrelevant.

From an outer v-coop, we have

$$
i_{5 L}=\frac{10 \mathrm{~V}}{5 \mathrm{k} \Omega}=2 \mathrm{~mA}
$$

$$
\therefore R_{T h}=\frac{v_{T h}}{i_{s c}}=\frac{10 \mathrm{~V}}{2 \mathrm{~mA}}=5 \mathrm{k}_{\mathrm{Jl}}
$$

Note: The low source across the rails allows to ignore the $50 i_{x}$ and $3 \mathrm{k} \Omega$. We may remove them. Then we observe that we are left with the Thevenin equivalent circuit: $V_{T h}=10 V, R_{\mathrm{TH}}=5 \mathrm{k} \Omega$.

b) $R_{L}=R_{T h}=5 \mathrm{~kJ}$ for max pwr transfer
c) $\quad P_{\text {max }}=\frac{V_{T h}^{2}}{4 R_{T h}}=\frac{(10 V)^{2}}{4.5 k \Omega}=\frac{100}{20} \mathrm{~mW}$

$$
F_{\max }=5 \mathrm{mw}
$$

트드 1270

HOMEWORK \#18 solution

After being in position \mathbf{c} for a long time, the switch moves from \mathbf{c} to \mathbf{d} at $t=t_{0}$.
Rail voltages $= \pm 12 \mathrm{~V}$

a) Choose either an R or C to go in box a and either an R or C to go in box \mathbf{b} to produce the $v_{\mathrm{o}}(\mathrm{t})$ shown above. (Note that v_{o} stays high forever after $t_{\mathrm{O}}+2 \mathrm{~ms}$.) Specify which element goes in each box and its value.
b) Sketch $v_{1}(\mathrm{t})$, showing numerical values appropriately.
c) Sketch $v_{2}(t)$, showing numerical values appropriately.
d) Sketch $v_{3}(\mathrm{t})$. Show numerical values for $t<t_{\mathrm{O}}$, for $t_{\mathrm{O}}<t<t_{\mathrm{O}}+2 \mathrm{~ms}$, and for $t_{\mathrm{O}}+2 \mathrm{~ms}<t$. Use the ideal model of the diode: when forward biased, its resistance is zero; when reverse biased, its resistance is infinite.
sol'n: a) For io to be low, (ie., -laV), we must have $v_{z}<v_{1}$.

To find v_{1}, we slide the $4 y$ sauce through the $6 k \Omega$ resistor and find that we have the equivalent of a -15 V source and a voltage divider formed by the $3 k \Omega$ and $6 k \Omega$ resistors.

$$
v_{i}=-15 \mathrm{~V} \cdot \frac{3 \mathrm{k} \Omega}{3 \mathrm{k} \Omega+6 \mathrm{k} \Omega}=-5 \mathrm{~V}
$$

At $t=0^{-}$, we mast have $V_{2}<-5 V$.
$a=R \quad\left[\begin{array}{l}\text { This is possible only if bax a } \\ \text { contains a resistor and box } b\end{array}\right.$
$b=C$ [contains a capacitor. If a is an R and B is a C, then the c will charge until $r_{z}=-10 v<v_{1}$.

When the suited mores from c to d, the capacitor voltage start charging toward ob, bat it will still be - Hoy initially. This gives the desired Waveform for $V_{a}(t)$: v_{0} will go high when $\quad v_{2}=v_{i}=-5 \mathrm{~V}$.

Note: The reasons why other components in boxes a and b fail to yield the desired $v_{0}(t)$ are as fellows:
$a=R$ and $b=R$ cannot give
a waveform that changes after
a delay. Fo would have to change instantly at $t=t_{0}$.
$a=c$ and $b=R$ would result
in c charging until no current Hows in R. This means $v_{2}=0 \mathrm{~V}$, or $v_{2}>v_{1}$, causing v_{0} to be $h i g h$ before $t=t_{d}$.
$a=C$ and $b=C$ would result in an arbitrary voltage at v_{2}. The total voltage drop across the two cis would be 10%. When the switch changes from c to d, the capacitors would charge until the total voltage drop across them was ob. The same current would flow in both C's, causing a voltage change that wand be inversely proportional to the C values. The waveform shown for $v_{0}(t)$ cold be produced, bat fere is a lack of control over the isyitiat value of $1 / 2$. This would make the timing of the $v_{0}(t)$ waveform uncertain. Thus, we reject His seiution.

$$
\begin{aligned}
& \text { Now we find possible values for } R \\
& \text { and } C \text {. We hare the following circuit } \\
& \text { model for } t>t_{0} \text { : } \\
& \begin{array}{c}
v_{c}\left(t>t_{0}\right)=v_{c}(t \rightarrow \infty)+\left[v_{c}\left(t_{d}^{+}\right)-v_{c}(t \rightarrow \infty)\right] \\
11 \\
\text { av } \\
-10 V
\end{array} \\
& v_{C}\left(t>t_{0}\right)=-10 e^{-t / \tau} v \text { (where we take } t_{0}=0 \text {) } \\
& \text { where } \tau=(R+i k a) C \\
& \text { We want } v_{c}(t=2 M s)=v_{1}=-5 V \\
& \text { or } \quad-10 e^{-2 m s} / \tau=-5 V \\
& e^{-2 x+\frac{t}{2} / \tau}=\frac{1}{2} \\
& -2 \operatorname{ms}=t \ln \frac{1}{2} \\
& \tau=\frac{-z \mathrm{~ms}}{\ln 2} \doteq 2.9 \mathrm{~ms} \\
& \text { One sol is } R=1.9 k \Omega \text { and } C=1, \mu F \text {. } \\
& \text { Note: } R=D \Omega \text { is min } R, C=2, q \mu \text { is max } C \text {. }
\end{aligned}
$$

b) $v_{1}(t)=-5 V$ as shown earlier.

c) $\left.\quad v_{2}=v_{c}(t)>O\right\rangle=-10 v e^{-t / 2.9 m s}$ from (a)
$v_{2}(\mathrm{t})$

d) When v_{0} is low, the top diode will act Like a wire and the bottom diode witt act like an open circuit.

We have a voltage divider: $v_{3}=-12 \mathrm{~V} \cdot \frac{5 \mathrm{k} \Omega}{2 \mathrm{k} \Omega+5 \mathrm{k} \Omega}=-\frac{60}{7} \mathrm{~V}$.

```
When \(v_{0}\) is high, the tap diode will act like an open circuit, leaving the bottom part of the circuit disconnected from \(v_{0}\), (or any other power source).
```

Thus $v_{3}=O V$ when v_{0} is high.

ㅌㄷㄷㅡ 1270

4
UNIVERSITY
of UTAH

Ex:

a) A frequency-domain circuit is shown above. Write the value of phasor \mathbf{V}_{3} in polar form.
b) Given $\omega=37 \mathrm{rad} / \mathrm{s}$, write a numerical time-domain expression for $v_{3}(\mathrm{t})$, the inverse phasor of \mathbf{V}_{3}.
sol'n: a) The $j 3 k \Omega$ and $-j 3 k \Omega$ sum to os $=$ wire.
Thus, the $15 k 0$ is bypassed by a sion and may be ignored.

It also follows that the $12+j 12 \mathrm{~V}$ is directly across the jota and directly across the $j \geq I_{x}$ source in series with the Bks resistor.

On circuit prodel is as follows:

By Ohm's law, $I_{x}=\frac{12+j k V}{j 6 \Omega}=\frac{2(i+j)}{j} \mathrm{~A}$
or $\mathbb{I}_{x}=-j 2(1 i j) A$
or $\mathbb{I}_{x}=2-j z$ A
It follows that $j 2 I I x=j 2(2-j 2) v=4+j 4 v$.
From a v-lop around the outside of the circuit, we wave the following: $V_{3}=(12+j(2) V-(4+j 4) V$
or $\quad v_{3}=8+j 8 \mathrm{~V}$
or $\quad V_{3}=8 \sqrt{2} \angle 45^{n} V$

b) $v_{3}(t)=P^{-1}\left[81,2<45^{\circ} V\right], \quad \omega=37 \mathrm{rad} / \%$

$$
r_{3}(t)=8 \sqrt{2} \cos \left(37 t+45^{\circ}\right) V
$$

