UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT

ECE 1000

HOMEWORK #8

Spring 2005

- 1. Give numerical answers to each of the following questions:
 - a. Rationalize $\frac{23 + j7}{15 j8}$. Express your answer in rectangular form.
 - b. Find the polar form of $(2+j3)(3+j2)+[3+j16]^*$. Note the asterisk that means "conjugate".
 - c. Find the following phasor: $P\left[-5\sin\left(100t-30^\circ\right)\right]$.
 - d. Find the magnitude of $\frac{100(3+j4)(4+j3)}{(7+j)(7-j)}$.
 - e. Find the imaginary part of $(1+j)e^{-j45^{\circ}}(j2)$.

2.

Choose an R, an L, or a C to be placed in the dashed-line box to make $v(t) = V_0 \cos (1kt - 45^\circ)V$

where V_0 is a real constant. State the value of the component you choose.

3. With your component from problem 2 in the circuit, calculate the resulting value of V_{o} .

4.

ECE 1000
Hw #8 solv
Give numerical answers to each of the following questions:
15
16
(25 points)
Give numerical answers to each of the following questions:
18
(5) a. Rationalize
$$\frac{23+j7}{15-j8}$$
. Express your answer in rectangular form.
(5) b. Find the polar form of $(2+j3)(3+j2)+[+j16]^{4}$. Note the asterisk that means
"conjugate".
(5) c. Find the following phasor: $p[-5sin(1001-30^{2})]$.
(5) c. Find the following phasor: $p[-5sin(1001-30^{2})]$.
(5) d. Find the magnitude of $\frac{100(3+j4)(4+j3)}{(7+j)(7-j)}$.
(5) e. Find the imaginary part of $(1+j)e^{-j45^{2}}(2)$.
 $f(x) = CCC(x) + CC(x) + CC(x)$
(5) e. Find the imaginary part of $(1+j)e^{-j45^{2}}(2)$.
 $f(x) = CCC(x) + CC(x) + CC(x)$
(5) $e^{-j(x)} + \frac{15+j8}{15+j8} = \frac{(-76)(5+)}{15^{5}+8^{5}}(2)$.
 $f(x) = CCC(x) + CC(x) + CC(x)$
(5) $e^{-j(x)} + \frac{15+j8}{15+j8} = \frac{(-76)(5+)}{15^{5}+8^{5}}(2)$.
 $f(x) = CCC(x) + CC(x) + CC(x)$
(5) $e^{-j(x)} + \frac{15+j8}{15+j8} = \frac{(-76)(5+)}{15^{5}+8^{5}}(2)$.
 $f(x) = CCC(x) + CC(x) + CC(x)$
(6) $(2+j^{3})(3+j2) + [j16]^{4} = (2+j3)(3+j2) + -j16 = 248+j288 = [j+1]$
(6) $(2+j^{3})(3+j2) + [j16]^{4} = (2+j3)(3+j2) + -j16 = 248+j288 = [j+1]$
(7) $e^{-j4} = CCC(x) + CC(x) + CC$

3. (35 points) $i_x \downarrow \geq 15k\Omega$ $j_{i_x} \downarrow \geq 15k\Omega$ $j_{i_x} \downarrow = 0.4 \text{ sin}(20\text{Mt} + 45^\circ)\text{mA}$ $j_{i_x} \downarrow = 0.4 \text{ sin}(20\text{Mt} + 45^\circ)\text{mA}$

<u>pts</u>

- (15) a. Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for $i_s(t)$, and show numerical impedance values for R, and L. Label the dependent source appropriately.
- (25) b. Find the Thevenin equivalent (in the frequency domain) for the above circuit. Give the numerical phasor value for V_{Th} and the numerical impedance value of z_{Th} .

Lest e St ILX 15K $l_{x} + l_{x}$ Ξ 15<u>Kix=0</u> j Ltest F -60Ki $+ \lfloor$ 15 +iltest 45K+66 Z #= (-45)<+60K. \square

 $V_{6}e^{j45^{\circ}}$ = -18Kj -3K-5 $\overline{\langle + 2 \rangle}$ _ noed -45 \Box 2