
Final Exam:
4 problems- 1. linear op amp (find vo, find R values given specific input(s) and output, Find Rin=V/I)
 2. comparator op amp choose R,L,C for boxes given output graph Graphs of signals in circuit Diodes(on wire, off open)
3. AC input with multiple time dependent elements Find V or I in frequency domain circuit. (Phasors)
4. thevenin equivalent circuit with dependent source and DC input. Find RL to give max power transfer and power value.

linear OpAmp
1. Assume 0V between +and - terminals assume 0A (redraw circuit)
2. Make sure to take a loop through the 0V at the input terminals.
comparator:
1. solve circuit at terminal with fixed inputs.
2. Label graph according to which terminal needs to be greater to achieve given output graph
3. Go through all possiblilities. Match possible values to see if graph can be achieved. Use the properties of L/C at t=0- and at infinity to make decisions. For each choice, write general form equation.
4. Graph each voltage desired
5. Look at diode circuit (line side of diode is negative) Look at voltages present at each side of diode ignoring Resistances. If diode is "on" replace with a wire. If "off" replace with an open. Look at all possibilities on output graph.
frequency domain circuit:
already in frequent domain. Will have dependent source. Use Kirchoffs laws, node V or mesh to solve.

Ex:

- a) The above circuit operates in linear mode. Derive a symbolic expression for v_0 . The expression must contain not more than the parameters i_{s1} , i_{s2} , R_1 , R_2 , R_3 , and R_4 .
- b) If $i_{S1} = 10 \,\mu\text{A}$ and $i_{S2} = 0 \,\mu\text{A}$, find the value of $R_2 = R_4$ that will yield an output voltage of $v_0 = 1 \,\text{V}$.
- c) Derive a symbolic expression for v_0 in terms of common mode and differential input currents:

$$i_{\Sigma} = \frac{i_{s1} + i_{s2}}{2}$$
 and $i_{\Delta} = \frac{i_{s1} - i_{s2}}{2}$

The expression must contain not more than the parameters i_{Σ} , i_{Δ} , R_1 , R_2 , R_3 , and R_4 . Write the expression as i_{Σ} times a term plus i_{Δ} times a term. Hint: start by writing $i_{\Sigma 1}$ and $i_{\Sigma 2}$ in terms of i_{Σ} and i_{Δ} :

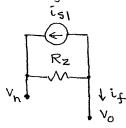
$$i_{s1} \equiv i_{\Sigma} + i_{\Delta}$$
 and $i_{s2} \equiv i_{\Sigma} - i_{\Delta}$

Write a formula for the circuit's input resistance, $R_{\rm in}$, as seen by source $i_{\rm s2}$. In other words, write a formula for voltage, v_2 , across $i_{\rm s2}$ divided by $i_{\rm s2}$:

$$R_{\rm in} = \frac{v_2}{i_{s2}}$$

Write R_{in} in terms of not more (and possibly less) than R_1 , R_2 , R_3 , and R_4 .

soln: a) First, we calculate V_p . No current flows into the op-amp, leaving a current divider. Equivalently, we have R_3 in parallel with R_4 driven by current source i_{52} .


Since the op-amp is operating in linear mode, $v_n = v_p$.

$$v_n = v_p = \hat{\iota}_{52} \cdot R_3 \| R_4$$

Now we the current flowing toward the -input from the left

$$i_3 = \frac{ov - v_n}{R_1} = -\frac{v_n}{R_1}$$

Since no current flows into the op-amp, we have the same current flowing in the feedback. We calculate the feedback current, \hat{i}_f , using v_n .

$$i_f = -i_{s1} + \frac{v_h - v_o}{R_z}$$

We set is = if and solve for V_0 .

$$\frac{-v_n}{R_1} = -is_1 + \frac{v_n - v_o}{R_2}$$

or

$$\frac{v_0}{R_2} = -i_{51} + \frac{v_n}{R_2} + \frac{v_n}{R_1}$$

or

$$V_0 = -i_{s_1}R_2 + V_n \left(1 + \frac{R_z}{R_1}\right)$$

or

$$V_0 = -i_{51} R_2 + i_{52} R_3 \| R_4 \cdot \left(1 + \frac{R_2}{R_1} \right)$$

b) If $i_{s2} = 0 \mu A$, then $v_p = 0 V$ and $v_n = v_p = 0 V$. It follows that all of i_{s1} must flow thru R_z . Thus,

٥r

$$R_2 = \frac{V_0}{-i_{51}} = \frac{IV}{-i_{0\mu}A}$$

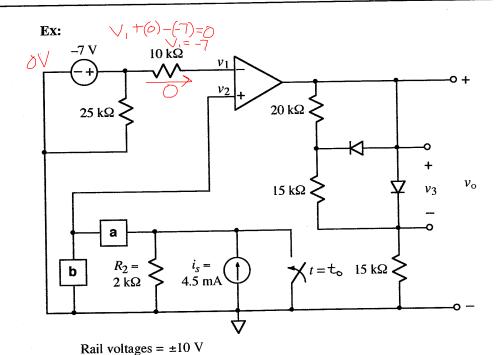
or

$$R_2 = -100 \, \text{k} \, \Omega$$

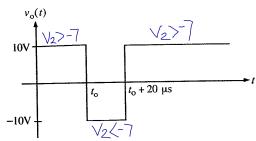
d) Using the answer from part (a), we substitute for īs1 and īs2 using the formulas given.

$$v_{o} = -\left(i_{z} + i_{\Delta}\right)R_{z} + \left(i_{z} - i_{\Delta}\right)R_{3} \|R_{4}\left(I + \frac{R_{z}}{R_{I}}\right)$$

$$V_{0} = \left[\left(R_{3} \| R_{4} \right) \left(1 + \frac{R_{2}}{R_{1}} \right) - R_{2} \right] i_{2}$$


$$- \left[\left(R_{3} \| R_{4} \right) \left(1 + \frac{R_{2}}{R_{1}} \right) + R_{2} \right] i_{\Delta}$$

d) V_2 is the voltage across i_{52} , as shown in the diagram. $V_2 = V_p$, (the voltage at the + input).


$$V_2 = i_{\beta 2} \cdot R_3 || R_4$$
 (see answer to part (a)) Using this result, we find R_{in} :

$$R_{in} = \frac{V_2}{\hat{\iota}_{\beta 2}} = \frac{\hat{\iota}_{\beta 2} R_3 \| R_4}{\hat{\iota}_{52}}$$

After being open for a long time, the switch closes at time $t = t_0$.

- a) Choose either an R or C to go in box a and either an R or L to go in box b to produce the $v_0(t)$ shown above. Use an R value of 3 k Ω . Also, note that v_0 stays high forever after $t_0 + 20 \,\mu s$. Specify which element goes in each box and its value.
- b) Sketch $v_1(t)$, showing numerical values appropriately.
- c) Sketch $v_2(t)$, showing numerical values appropriately.
- d) Sketch $v_3(t)$. Show numerical values for $t < t_0$, for $t_0 < t < t_0 + 20$ µs, and for $t > t_0 + 20$ µs. Use the ideal model of the diode: when forward biased, its resistance is zero; when reverse biased, its resistance is infinite.

sol'n: a) We have a comparator, since the op-amp lacks negative feedback.

 v_1 is a fixed voltage. Since the 25 ks is across the -7V source, it has no effect on v_1 . Since no current flows into the op-amp, the voltage drop across the loke resistor is zero, and the loke also has no effect on v_1 .

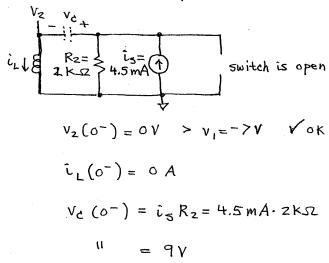
 $v_1 = -7V$ (at all times)

To obtain the waveform given in the problem for $v_0(t)$, the voltage for v_2 must be more positive than $v_1=-7V$ for $t< t_0$ and $t> t_0+20 \mu s$. The voltage for v_2 must also be more negative than $v_1=-7V$ for $t_0< t< t_0+20 \mu s$.

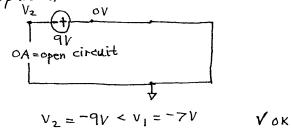
To determine what components to put in box a and box b, we consider each of the possibilities.

case I: a = R b = RThis fails because v_z would never be negative.

Thus, v_z would never be less


than v_1 .

case II: a = C b = L


Although this type of circuit is beyond the scope of this course, we may

consider whether such a circuit might work.

For t=0, (assume $t_0=0$), we have L= wire and C= open:

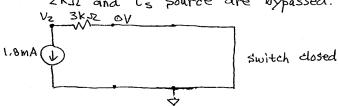
At $t=0^+$, we have $i_L(0^+)=i_L(0^-)=0A$ and $V_c(0^+)=V_c(0^-)=9V$, whereas the voltage on the right side of the C will be OV owing to the now-closed switch. i_{sz} and R_z are bypassed.

For $t\rightarrow\infty$, we have a situation similar to t=0, except there is no R.

Without a resistor in the circuit, the energy stored in the circuit at t=0 will remain in the circuit forever. It back and forth from the C to the L and causes an oscillating voltage at V_2 . This would cause $V_0(t)$ to repeatedly go high and low.

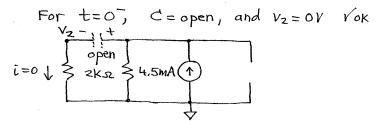
Thus, the L and C solution will not work.

case Π : a = R b = L


For t=0, L= wire and $v_2(0^-)=0V$ Vok R=3k.52 $V_1(0^-)$ $V_2(0^-)=0V$ $V_3(0^-)=0V$ $V_3(0^-)=0V$

We have a current divider:

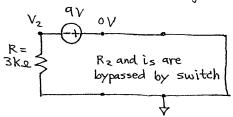
$$i_{L}(0^{-}) = i_{5} \cdot \frac{2k\Omega}{2k\Omega + 3k\Omega}$$


$$= 4.5 \text{ mA} \cdot \frac{2}{5} = 1.8 \text{ mA}$$

For $t=0^+$, $i_L(0^+)=i_L(0^-)=1.8 \text{ mA}$. $2 \text{ K}\Omega$ and i_S source are bypassed.

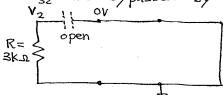
 $V_{z}(0^{-}) = 0V - 1.8 \text{mA} \cdot 3 \text{kg} = -5.4 \text{V}$ But -5.4 V > -7 V doesn't work! The last possibility must be considered.

dase \mathbf{W} : a = C b = R



Since the C is open, vz is pulled down to ref by the R below it.

The voltage on C is $V_c(0^-) = 4.5 \text{mA-2kQ}$.


$$v_c(o^{-}) = 9V.$$

For $t=0^+$, $V_c(0^+)=V_c(0^-)=9V$, and the closed switch makes the voltage on the right side of C ov.

We have $V_2(0^+) = -9V < -7V$ Vox

For $t\rightarrow \infty$, the C is open and Rz and is are by passed by the switch.

We $V_2(t\rightarrow \infty) = OV$, (pulled down to ref by $3K \cdot R$).

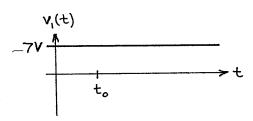
$$V(+\rightarrow \infty) = 0V > -7V$$
 Vok

This circuit will work!

Using the general form of soln for RC problems, we have the following result:

$$V_{2}(t) = V_{2}(t \rightarrow \infty) + [V_{2}(0^{+}) - V_{2}(t \rightarrow \infty)] e$$

Here, the R is $3k\Omega$, as the $2k\Omega$ is by passed for t>0.

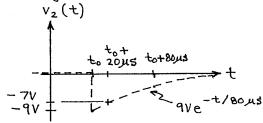

$$V_2(t) = OV + [-9V - OV] e$$
or
$$V_2(t) = -9V e$$

We want $v_0(t)$ to go high at $t=20\,\mu s$. The transition of $v_0(t)$ from low to high occurs when $v_1=v_2$. Using our expression for $v_2(t)$ with $t=20\,\mu s$ and $v_2(20\,\mu s)=v_1=-7v$ we have

or
$$\frac{7}{9} = e^{-20\mu \frac{1}{3}/3k \cdot \frac{1}{2} \cdot \frac{1}{2}}$$

$$ln \frac{7}{9} = -20 \mu s/3 k \Omega \cdot C$$
or $C = -20 \mu s/[ln(7/9) \cdot 3k] = 26.5 nF$

b) From part (a), $v_1(t) = -7V$ at all times.


c) From part (a), $V_2(t) = 9Ve^{-t/3k\Omega \cdot 26.5nF}$

where to=0 is assumed, and t>0

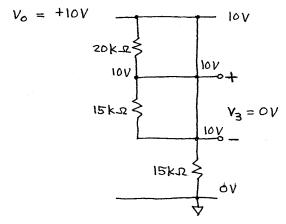
Our time constant is

r = 3k · 26.5 nF = 79.6 μs ≈ 80 μs

In time τ , $\approx 2/3$'s of the total change in voltage $v_2(t)$ occurs.

Note: From part (a), we have $V_2(t=0^-)$ is OV because no current flows thru $R=3\,k\,\Omega$.

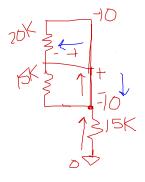
We also have $V_2(t=20 \mu s) = -7V$.

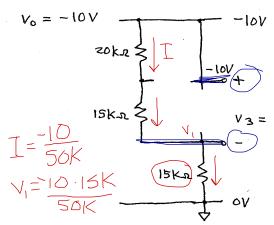

d) When vo is high (10V = Vrail), the two diodes will be forward biased.

(Otherwise, they would be open circuits.

But that would result in positive

V-drops across the diodes, which is a contradiction.)


Thus, we replace the diodes with short-circuits:



We have $v_3 = 0V$.

When Vo is low (-10V=-Vrail), the two diodes will be reverse biased. Otherwise, they would be short circuits. But that would result in negative V-drops across the diodes, which is a contradiction.)

Thus, we replace the diodes with open-circuits:

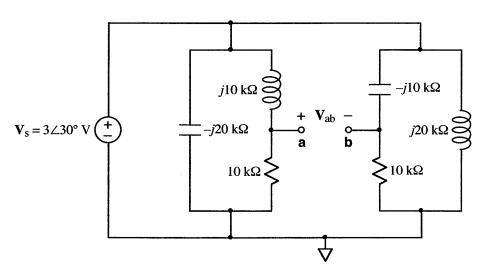
we find voltages from V-divider egns:

$$V_{3-} = -10V \cdot 15k\Omega = -3V$$
 $15k\Omega + 15k\Omega + 20k\Omega$

$$V_{3+} = -10V$$

Thus,
$$V_3 = V_{3+} - V_{3-} = -10v - (-3v) = -7v$$

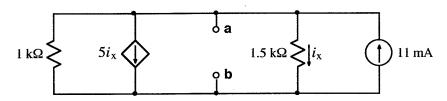
$$V_3(t)$$


$$V_3 = V_{3+} - V_{3-} = -10v - (-3v) = -7v$$

$$V_3(t) = -7v$$

$$V_3(t) = -7v$$

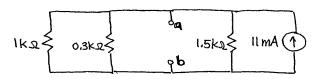
Ex:


- a) A frequency-domain circuit is shown above. Write the value of phasor voltage V_{ab} in polar form.
- b) Given $\omega = 500$ k rad/s, write a numerical time-domain expression for $v_{ab}(t)$, the inverse phasor of V_{ab} .
- sol'n: a) We have four branches directly across V_b . We may solve each branch separately. For the voltages V_a and V_b , we have two voltage dividers:

$$V_{a} = V_{s} \cdot 10 \text{ kg}$$
 and $V_{b} = V_{s} \cdot 10 \text{ kg}$
 $10 \text{ kg} + j \text{ lokg}$ $10 \text{ kg} - j \text{ lokg}$
 $V_{ab} = V_{a} - V_{b} = V_{s} \left(\frac{1}{1+j} - \frac{1}{1-j} \right)$
 $= 3 \angle 30^{\circ} \left(\frac{1-j-1+j}{2} \right) = 3 \angle 30^{\circ} \cdot \left(-j\frac{2}{2} \right)$
 $V_{ab} = 3 \angle 30^{\circ} \cdot 12 - 90^{\circ}V = 32 \angle -60^{\circ}V$

b)
$$v_{ab}(t) = 3 \cos (500 \text{kt} - 60^{\circ}) \text{ V}$$

Ex:



- a) Find the Thevenin equivalent of the above circuit relative to terminals a and b.
- b) If we attach R_L to terminals **a** and **b**, find the value of R_L that will absorb maximum power.
- c) Calculate the value of that maximum power absorbed by R_L .

solh: a) We observe that the voltage across all the components is the same, and it is equal to i_X -1.5 k Ω .

For the dependent source, we may find an equivalent resistance:

$$R_{eg} = \frac{V}{\bar{\iota}} = \frac{1.5 \, k \Omega \cdot \hat{\iota}_{x}}{5 \, \hat{\iota}_{x}} = 0.3 \, k \Omega$$

The V_{Th} is the voltage across a, b and is equal to the 11 mA current times the combined parallel impedance.

$$V_{Th} = 11 \text{ mA} \cdot |k_{\Omega}| |1.5 \text{ k}_{\Omega}| |0.3 \text{ k}_{\Omega}|$$

we have $|1.5 \text{ k}_{\Omega}| |0.3 \text{ k}_{\Omega}| = 0.3 \text{ k}_{\Omega} \cdot 5||1$

$$|1| = 0.3 \text{ k}_{\Omega} \cdot \frac{5}{6}$$

$$|1| = 250 \Omega$$

and $||K_{\Omega}|| ||250 \Omega| = 250 \Omega \cdot 4||1$

$$|1| = 250 \Omega \cdot \frac{1}{5}$$

$$|1| = 200 \Omega$$

To find Rth, we turn off the independent II mA source and look into a,b. We have

Thevenin equivalent:

$$R_{Th} = 200 R$$
 $V_{Th} = \begin{pmatrix} + \\ 2.2V \end{pmatrix}$

b) For max pwr transfer, we use

d) When $R_L = R_{Th}$, we achieve the max pwr transfer:

$$p_{\text{max}} = \frac{V_{\text{Th}}}{4 R_{\text{Th}}}$$

$$= \frac{(2.2V)^2}{4(200.2)}$$