
(3) $i_{s} R_{1}-\alpha V_{\text {th }} R_{1}-\alpha V_{t h} R_{2}-V_{t h}=0$

Find the Thevenin's equivalent circuit at terminals $a-b$. v_{x} must not appear in your solution. Hint: Use node voltage method to find v above R_{1}. Note: $\alpha>0$.

$$
R_{T h}=\frac{V_{T h}}{i_{s c}} \text { where } i_{\$ c}=i \text { out of 'a' terminal } \begin{aligned}
& \text { with wire from } a \text { to } b
\end{aligned}
$$

Find v_{1} : use Node v method

$$
\begin{aligned}
& \text { write } v_{x} \text { in terms of } v_{1}: v_{x}=v_{1}-\alpha v_{x} R_{2} \\
& v_{x}=v_{1} /\left(1+\alpha R_{2}\right) \\
& \text { Node } v_{1} \text { en: }-i_{s}+\frac{v_{1}}{R_{1}}+\frac{\dot{v}_{1}-v_{x}}{R_{2}}=O A \\
& \begin{array}{ll}
v_{1}\left(\frac{1}{R_{1}}+\frac{\alpha}{1+\alpha R_{2}}\right)=i s & C_{1}\left[\left(\frac{\left.1-\frac{1}{1+\alpha R_{2}}\right)}{R_{2}}=\frac{\frac{1+\alpha R_{2}-X}{1+\alpha R_{2}}}{R_{2}}\right.\right. \\
v_{1}=i_{s} \frac{1}{\frac{1}{R_{1}}+\frac{\alpha}{1+\alpha R_{2}}} \quad C=v_{1} \frac{\alpha}{1+\alpha R_{2}}
\end{array} \\
& v_{T h}=v_{x}=\frac{v_{1}}{1+\alpha R_{2}}=i_{s} \frac{1}{\frac{1+\alpha R_{2}}{R_{1}}+\alpha} \quad \tau=v_{1}\left(1-\alpha \frac{R_{2}}{R_{1}}\right) \\
& \begin{aligned}
& V_{T h}=\frac{i_{S}}{\frac{1+\alpha R_{2}}{R_{1}}+\alpha}=i_{S}\left[R_{1} \|\left(R_{2}+1 / \alpha\right)\right] \cdot \frac{1 / \alpha}{R_{2}+1 / \alpha} \begin{array}{l}
\text { Latter from } \\
\begin{array}{l}
\text { formula } \\
\text { using } 1 / \alpha \text { for } \\
\text { Reg of dep. s }
\end{array}
\end{array} \\
& \text { For } i_{s 1} \text { we have } V_{x}=o V .
\end{aligned} \\
& \begin{array}{l}
R_{T h}=\frac{V_{T h}}{i_{s c}} \quad \text { For } i_{s c} \text { we have } V_{x}=o v . \\
\text { Then } V_{1}=i_{s} \cdot R_{1} \| R_{2} \text { (no dep ore) }
\end{array} \\
& R_{T h}=\frac{i_{5}}{\frac{1+\alpha R_{2}}{R_{1}}+\alpha} \frac{R_{1}+R_{2}}{i_{s} R_{1}} \text { and } i_{\text {sc }}=\frac{i_{s R_{1}}}{R_{1}+R_{2}} \\
& R_{\text {Th }}=\frac{R_{1}+R_{2}}{1+\alpha\left(R_{1}+R_{2}\right)}=R_{1} \|\left(R_{2}+\frac{1}{\alpha}\right) \quad \begin{array}{l}
\text { Latter formula from using } \\
\text { 1/ג for dep sc and } \\
\text { looking in from } a, b \text { with } \\
i s \text { ore off. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& +I_{2}+\alpha V_{11}-I+\operatorname{est}=0 \\
& +I_{2}\left(R_{1}\right)+I_{2} R_{2}-1=0 \\
& I_{2}=\frac{1}{R_{1}+R_{2}} \\
& I_{\text {test }}=\alpha(1)+\frac{1}{R_{1}+R_{2}}=\frac{\alpha\left(R_{1}+R_{2}\right)+1}{\left(R_{1}+R_{2}\right)} \\
& R_{\text {th }}=\frac{1}{T_{1}+s t}=\frac{R_{1}+R_{2}}{\alpha\left(R_{1}+R_{2}\right)+1}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad P=\frac{1}{3} \cdot(18)(-24)= \\
& \text { 3. (25 points) } V=-24 \\
& \text { Calculate the power consumed by the dependent current source, (labeled } \\
& \frac{1}{3} \mathrm{v}_{\mathrm{x}} \text {). Note: If a source supplies power, the power it consumes is negative. } \\
& \text { solid }=\text { Find } v_{1} \text {. Then } v \text { athos's dep sro is }-v_{1} \text {. } \\
& \text { write } v_{x} \text { in terms of } v_{1}: v_{x}=v_{1}-6 v \\
& \text { Node } V \text { for } v_{1} \text { node: }-\frac{1}{3}\left(v_{1}-6 v\right)+\frac{v_{1}-6 \nu}{R_{1}}+\frac{v_{1}}{R_{2}}+?! \\
& \text { We don't need eq'n! } \quad v_{1}=24 \mathrm{v} \text { from sro on right. } \\
& \therefore p=\frac{1}{3} v_{x} \cdot\left(-v_{1}\right)=\frac{1}{3}\left(v_{1}-6 v\right)\left(-v_{1}\right) \\
& =\frac{1}{3}(24 v-6 v)(-24 v) \\
& =\frac{1}{3}(18 v)(-24 v) \\
& p=-144 w
\end{aligned}
$$

Ex:

For the circuit shown, write three independent equations for the node-voltages, $\mathrm{v}_{1}, \mathrm{v}_{2}$, and v_{3}. The quantity v_{x} must not appear in the equations.
sol'n: we first write v_{x} in terms of node -v's.

We use a v-divider since we have v_{1}
across R_{2} in series with R_{4} :

We have a v-sri connecting v_{1} to v_{3}. so v_{1}, v_{3} form a supernode.

We write a current summation eg'n for v_{1}, v_{3}. We find sum of i's flowing out of bubble containing v_{1}, v_{3}, and the dependent v-sra.
(1)
v_{1}, v_{3} node: $\frac{v_{1}-v_{2}}{R_{1}}+\frac{v_{1}-o v}{R_{2}+R_{4}}+\frac{v_{3}-v_{2}}{R_{3}}+i_{51}=O A$
We also write a voltage eq'n for v_{1} and v_{3}. Note that we substitute for v_{x} to obtain an eq'n containing only node voltages.
(2)

$$
v_{1}=v_{3}+\alpha(\underbrace{v_{1} \frac{R_{4}}{R_{2}+R_{4}}}_{v_{x}})
$$

For v_{2}, we just sum currents out of node.
(3) $\quad v_{2}$ node: $\frac{v_{2}-v_{1}}{R_{1}}+\frac{v_{2}-v_{3}}{R_{3}}+i_{52}=O A$

We now have our 3 eq'ns for v_{1}, v_{2}, and v_{3}.

Ex:

For the circuit shown, write three independent equations for the three mesh currents, i_{1}, i_{2}, and i_{3}. The quantity i_{x} must not appear in the equations.
sol'n: We first write i_{x} in terms of mesh currents.
Since i_{x} is a current on the outside edge of the circuit, (flowing thru R_{3}), it is equal to the mesh (also called "loop") current.

$$
i_{x}=i_{3}
$$

Next we look for super meshes where a current sro is between two loops, We have a supermesh for i_{2}, i_{3} with $i_{\text {s }}$ in between.

We draw the circuit model before writing our egins.

i_{2}, i_{3} loop: $-i_{3} R_{2}+i_{1} R_{2}-i_{2} R_{1}-i_{3} R_{3}=o \mathrm{~V}$
Csupermesh
uses coop
around right
half of circuit)
We add a current eq'n for i_{s} sri between loops.
$i_{s}=i_{3}-i_{2} \quad\left(i_{2}\right.$ has - sign because it is
measured in direction
opposite to direction of i_{s})
Finally, for the i_{l} loop we encounter a curious situation. Since we have a current source on the outside edge of the circuit, we must have that i, = current for sro.
Thus, $i_{1}=\alpha i_{3}$. This is the eg'n for i_{1}.
We now have 3 eq'ns in i_{1}, i_{2}, i_{3} which we could solve to find i_{1}, i_{2}, and i_{3}.

Ex:

Find the Thevenin's equivalent circuit at terminals $a-b$. i_{x} must not appear in your solution. Note: $\alpha \neq 1$.
sol'n: We must find $V_{T h}$ and $R_{T h}$ for the Thevenin equivalent circuit that has the same behavior as the above circuit when viewed from a, b terminals.

$V_{T h}=V_{a, b}$ for circuit with nothing connected
across a, b.

We can use node-v method or another method of our choice to find $v_{a, b}$

We first define i_{x} in terms of node voltages. Here, i_{x} flows thru R_{2}. Thus $i_{x}=\frac{V_{T h}}{R_{2}}$.

We have a supernode for v_{1} and $v_{T h}$.
So we sum currents out of a bubble around $v_{1}, v_{T h}$, and v_{s}.
$v_{1}, v_{T h}$ node: $-i_{s}-\alpha \frac{v_{T h}}{R_{2}}+\frac{v_{T h}}{R_{2}}=O A$

We could continue on to write a voltage
eq'n for v_{1} and $v_{T h}: v_{1}=v_{T h}+v_{s}$
But our first eq'n has only $V_{T h}$ in it; we can solve the first eg'n for $V_{T h}$ and stop there.

Rearranging gives $V_{T h}\left(\frac{1}{R_{2}}-\frac{\alpha}{R_{2}}\right)=i_{5}$
or $V_{T h}=\frac{i_{5} R_{2}}{1-\alpha}$
To find $R_{T h}$, we can use the method of shorting out a and b and measuring the current in the wire. This is $i_{s c}$ for
$i_{\text {short circuit. If }}$ we look at a Thevenin
equivalent circuit with a wire from a to b,
we have current $i_{\text {Sc }}=\frac{V_{\text {Th }}}{R_{\text {Th }}}$.
Thus, $R_{\text {Th }}=\frac{v_{\text {Th }}}{i_{\text {Sc }}}$.
We redraw our circuit with a wire from a to b.

This is a different circuit than before. We have or at a_{1} (instead of $V_{T h}$), and no current flows in R_{2} since it is bypassed by a wire. Also, $i_{s c}=i_{x}$.'

We also have $v_{1}=o v+v_{s}=v_{s}$. circuit is solved.
or is it? We still need to find i sc c $=i_{x}^{\prime}$

Using a current summation at v_{1}, we have
$-i_{s}-\alpha i_{x}^{\prime}+i_{x}^{\prime}=O A$
or $\quad i_{x}^{\prime}(1-\alpha)=i_{s}$
or $\quad i_{x}{ }^{\prime}=\frac{i_{s}}{1-\alpha}=i_{s c}$
Using $R_{\text {Th }}=\frac{v_{\text {Th }}}{i_{S C}}$ gives $R_{T h}=\frac{\frac{i_{S} R_{2}}{1-\alpha}}{\frac{i_{S}}{1-\alpha}}$
or $R_{T h}=R_{2}$ (Nothing else plays a role in $R_{T h i}$)

Consistency check: Set $\alpha=0 \Rightarrow$ dependent src=open.
Then R_{1}, v_{s} in series with current sire i_{s} irrelevant.
We have Norton equiv, i_{S} and $R_{2}: V_{T h}=i_{S} R_{2}, R_{T h}=R_{2} V$

Calculate the power dissipated in the dependent current source, (labeled $3 \mathrm{v}_{\mathrm{x}}$).

$$
+2 / 3 T_{1}=\frac{1}{3}(3) \rightarrow I_{1}=3 / 2 \rightarrow V_{x}=\frac{1}{2}
$$

sol'n: Any method of solution is allowed, (provided it is a valid approach
Well use node - voltage method with reference on bottom and v_{1} on top. It also helps
to redraw circuit.

We write v_{x} in terms of v_{1} by using a voltage divider:

$$
v_{x}=v_{1} \cdot \frac{1 / 3 \Omega}{\frac{1}{3} \Omega+\frac{1}{3} \Omega}=\frac{v_{1}}{2}
$$

Now we write the current summation eq'n for node V_{l}.

$$
\sum_{v_{x}}^{-3}\left(\frac{v_{1}}{2}\right)+\frac{v_{1}}{\frac{1}{3} \Omega+\frac{1}{3} \Omega}+\frac{v_{1}}{\frac{1}{3} \Omega}-3 A=O A
$$

$$
\text { or } v_{1}\left(-\frac{3}{2}+\frac{3}{2}+\frac{3}{\Omega}\right)=3 A
$$

$$
\text { or } \quad V_{1}=\mid A \cdot \Omega=1 V
$$

So we have $\begin{aligned}+ \\ v_{1}\end{aligned} \hat{1}\left\langle 3 v_{x}=3 \frac{v_{1}}{2}=\frac{3}{2} A \quad \begin{array}{l}-v_{1}=-1 v \\ \\ +\end{array}\right.$
Power is $p=i v$ where i, v follow
passive sign convention.

$$
p=\frac{3}{2} A \cdot(-I V)=-\frac{3}{2} W
$$

Note: In this problem we can replace the dependent sro with a resistor, (even before we know the value of v_{1}).

We have voltage v_{1} across dependent
sic and current $-3 v_{x}=-\frac{3 v_{1}}{2}$

$$
\begin{aligned}
& + \\
& v_{1}
\end{aligned} \hat{1} v_{x} \downarrow i=-3 v_{x}=-\frac{3 v_{1}}{2 \Omega}
$$

Then $R_{\text {eq }}=\frac{V_{1}}{-\frac{3}{v} V_{1}}=-\frac{2}{3} l$.
Use this instead of dependent sec: $:$

트드 1270

EX:

Find the Thevenin equivalent circuit atferminals $a-b . v_{x}$ must not appear in your solution. Hint: Use the node-voltage method. Note: $0<\alpha<1$.
solin: $V_{T h}=V_{a, b}$ with nothing connected across a, b Using the node-voltage method, with the reference at the bottom and $v_{T h}$ at the top, our circuit is as follows:

We write v_{x} in terms of $v_{T h}$:

$$
v_{x}=v_{T h}
$$

The current summation for the v_{1} node has only two terms:

$$
\frac{v_{T h}-\left(v_{S}+\alpha v_{T h}\right)}{R_{1}}+\frac{v_{T h}}{R_{2}}=0 m A
$$

or

$$
v_{T h}\left(\frac{1}{R_{1}}-\frac{\alpha}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{v_{5}}{R_{1}}
$$

Multiplying both sides by R_{1} yields

$$
v_{T h}\left(1-\alpha+\frac{R_{1}}{R_{2}}\right)=v_{S}
$$

or

$$
V_{T h}=\frac{V_{5}}{1-\alpha+\frac{R_{1}}{R_{2}}}=V_{s} \frac{R_{2}}{R_{2}(1-\alpha)+R_{1}}
$$

To find $R_{T h}$, we use $R_{T h}=\frac{v_{T h}}{i_{\text {Sc }}}$
where $i_{\text {Sc }} \equiv$ short circuit current flowing

With a wire connecting a and $b, v_{x}=O v$ and the dependent source becomes a wire.

Also, no current will flow thru R_{2}, and we may ignore R_{2}.

$\sum I:-I_{\text {test }}+\frac{1}{R_{2}}+\frac{1-\alpha}{R_{1}}=0$
$I_{\text {test }}=\frac{R_{1}+R_{2}(\mid-\alpha)}{R_{1} R_{2}}$

\qquad

If we ignore R_{z}, we calculate inc from the outer loop:

$$
i_{S C}=\frac{v_{S}}{R_{1}}
$$

Thus, we have

$$
R_{T h}=\frac{v_{T h}}{i_{S C}}=\frac{\frac{v_{s}}{1-\alpha+\frac{R_{1}}{R_{2}}}}{\frac{v_{s}}{R_{1}}}=\frac{R_{1}}{1-\alpha+\frac{R_{1}}{R_{2}}}
$$

Other equivalent forms for $R_{T h}$:

$$
\begin{aligned}
& R_{T h}=\frac{R_{1} R_{2}}{R_{2}(1-\alpha)+R_{1}} \\
& R_{T h}=\frac{1}{\frac{1-\alpha}{R_{1}}+\frac{1}{R_{2}}}=\frac{R_{1}}{1-\alpha} \| R_{2}
\end{aligned}
$$

The circuit diagram for the Thevenin equivalent:

Note: For the first part of this problem, when we calculate $V_{T h}$, we may use an equivalent resistance in place of the dependent source.

With a, b open circuit, the same current, i, flows in R_{2} and the dependent source.

$$
\therefore v_{x}=i R_{2} \quad \text { or } \quad i=\frac{v_{x}}{R_{2}}
$$

The equivalent R for the dependent source is

$$
R_{e q}=\frac{\alpha v_{x}}{-i}=\frac{\alpha v_{x}}{\frac{v_{x}}{R_{z}}}=-\alpha R_{2}
$$

Using Req in place of αv_{x} allows us to obtain $v_{T h}$ from a v-divider formula:

$$
v_{T h}=v_{5} \frac{R_{2}}{R_{2}-\alpha R_{2}+R_{1}}=v_{s} \frac{R_{2}}{R_{2}(1-\alpha)+R_{1}}
$$

This agrees with our node-voltage result.

