Class Load

Syllabus \& tentative schedule outline the workload for this semester. This is a very busy class. Every week will require AT LEAST 10 HOURS of outside studying to pass class.

ECE3700 + ECE2280 $=$ Very busy semester $-\underline{\text { Organize your time! }}$

How can you survive??

1. Easiest way to get through school is to actually learn and try to retain what you are asked to learn.

- Even if you're too busy, don't lose your good study practices. What you "just get by" on today will cost you later.
- Don't fall for the "I'll never need to know this" trap. Sure, much of what you learn you may not use, but some you will need, either in the current class, or future classes, or maybe sometime in your career. Don't waste time second-guessing the curriculum, It'll still be easier to just do your best to learn and retain.

2. Don't fall for the "traps".

- Homework answers, Extra problem solutions, Posted solutions, Lecture notes.

3. KEEP UP! Use calendar.
4. Make "PERMANENT NOTES" after you've finished a subject and feel that you know it.

Review:

- KVL, KCL, Ohm's Law, Thevenin Equivalence, OpAmps
a. Derive an expression for I_{1}. The expression must not contain more than the circuit parameters α, V_{a}, R_{1}, and R_{2}. (Make sure to eliminate V_{2} from the answer) $(\alpha \neq 1)$

Dr. Rasmussen

Derive an expression for V_{1}. The expression must not contain more than the circuit parameters $\mathrm{V}_{\mathrm{a}}, \mathrm{i}_{\mathrm{a}}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$, and R_{4}. (Hint: It is not just a simple voltage divider)

Ohm's Law: $\mathbf{V}=\mathbf{I} * \mathbf{R}$

$$
V_{1}=i_{1} R_{1}
$$

KCL: Summation: $i_{a}-i_{1}-i_{3}=0$
KVL: voltage loop: $+i_{1}\left(R_{2}\right)+i_{1}\left(R_{1}\right)-i_{3}\left(R_{3}\right)-V_{a}=O$ (2)

$$
\text { From (1) } \Rightarrow i_{3}=i_{a}-i_{1} \text { (plugging this into (2)) }
$$

$$
i_{1}\left(R_{1}+R_{2}\right)-\left(i_{a}-i_{1}\right)\left(R_{3}\right)-V_{a}=0
$$

$$
i_{1}\left(R_{1}+R_{2}+R_{3}\right)=i a R_{3}+V_{a}
$$

$$
\therefore \quad i_{1}=\frac{i_{a} R_{3}+V_{a}}{R_{1}+R_{2}+R_{3}}
$$

$$
V_{1}=i_{1} R_{1}=\frac{i_{a} R_{3} R_{1}+V_{a} R_{1}}{R_{1}+R_{2}+R_{3}}
$$

Thevinen Equivalence:

CASE 1: Thevenin Equivalent (circuit with only independent sources)
Step 1. Turn off all independent sources. (This means V=0 (short) and I=0 (open))
Step 2. Rth=equivalent R seen between the two desired nodes $\mathrm{a}-\mathrm{b}$.
Step 3. Vth $=$ open circuit voltage between abb.

Dr. Rasmussen

ECE2280 Fundamentals of Electrical Engineering
CASE 2: Thevenin Equivalent (circuit with dependent sources)
Step 1. Calculate the open circuit voltage, Vth.
Step 2. Calculate Rth. Use only one of the methods below:
Method 1: TEST SOURCE
(a) Remove all independent sources.
(b) Apply a voltage source Vtest between $a-b$ and determine the resulting current Itest. \{OR apply a current source Itest between $a-b$ and determine the resulting voltage Vtest. Using 1 V or 1 A as the value of the applied test sources allow easy multiplication or division)
(c) Rth $=V$ test/Itest

Method 2: SHORT CIRCUIT
(a) Short circuit between a-b and find Isc, short circuit current.
(b) $\mathrm{R}_{\mathrm{Th}}=\mathrm{Vth} / I s c$

Example, Case 1: (independent sources) Find Thevenin across R2(Removing R2 from the circuit). \leq http://en.wikibooks.org/wiki/Electronics/Thevenin/Norton_Equivalents> \quad independent sources.

Step 2 and Step 3:
$R_{t h}=R_{1}+R_{3} \| R_{4}$
$V_{t h}=V_{1}$

hort) and I=0 (open))
R.

Example Case 2:

Find Thevenin between a-b.

$\mathrm{Vo}=-5 \mathrm{i} 2(10| | 40)=-5 \mathrm{i} 2(10)(40) / 50=-40 \mathrm{i} 2$
i2 $=-3 \mathrm{v} 1(10) / 60=-1 / 2 \mathrm{v} 1 \sim$
$\mathrm{Vg}-191-\mathrm{v} 1-3 \mathrm{v} 1(3)=0 \quad(\mathrm{i} 1=0)=>10 \mathrm{v} 1=\mathrm{Vg}$
$\mathrm{Vo}=-40(-1 / 2)(\mathrm{Vg} / 10)=+2 \mathrm{Vg}=\mathrm{Vth}$
Dr. Rasmussen
Spring 2011

ECE2280 Fundamentals of Electrical Engineering

Step 2:
Method 1: TEST SOURCE
(a) Remove all independent sources.
(b) Apply a test source (Itest in this case). Analyze circuit for Vtest=Vo in this case.

SAME

Note: Use of the Isc is sometimes easier than the test source. Suggest trying that method first. Both method's can be used to "check" the other one.

Dr. Rasmussen
Spring 2011

Example \#3

Solve for I, I1, I2, and V1: $I=\frac{12 V}{2 k+3 k \| 6 k}=\frac{12}{2 k+\left(\frac{3 k(6 k)}{3 k+6 k}\right)}=\frac{12}{2 k+2 k}=3 m A$
$I 1=\frac{V 1}{3 k} ; I 2=\frac{V 1}{6 k}$
$I=I 1+I 2=V 1\left(\frac{1}{3 k}+\frac{1}{6 k}\right)=V 1\left(\frac{3 k}{6 k}\right)=V 1\left(\frac{1}{2 k}\right) \Rightarrow V 1=I \cdot 2 k=3 m(2 k)=6 V$
$I 1=\frac{6}{3 k}=2 \mathrm{~mA} ; I 2=\frac{6}{6 k}=1 \mathrm{~mA}$

Example \#4

Given $\mathrm{V}_{\mathrm{g}}=6.25 \mathrm{mV}$, find V_{o}. Find the Thevenin equivalent between terminals a-b.

ECE2280 Fundamentals of Electrical Engineering

$V_{\text {th }}=V_{0} \Rightarrow$ Therefore find V_{0} :

$50 \cdot 12.5$ $\frac{50 \cdot 12.5}{12.5+50}=10 \Omega$
$\left.\Rightarrow i_{2}=\frac{V_{i}}{100}=\frac{-20 i_{1} \cdot(2511100)}{100}=\frac{-20 i_{1}}{100} \cdot \frac{25 \cdot 100}{100+25}=-4 i_{1}\right)-\frac{\text { punk now }}{\text { find }}$
$\left.\Rightarrow i_{1}=V_{g} /(10+40)=\frac{6.25 \mathrm{~m}}{50}=125 \mathrm{~m}\right)$ No unknowns
previous equations

$$
i_{2}=-4 i_{1}=-4(.125 \mathrm{~m})=-.5 \mathrm{~m}
$$

$V_{\text {th }}=V_{0}=-500 i_{2}=+500(+.5)=250 \mathrm{~V}$.
$R_{\text {th }}=\frac{V_{\text {th }}}{i_{s c}}$

From the analysis for Vth (above). Vth=-500i2
Isc=-50i2 so
Ruth $=-500 \mathrm{i} 2 /-50 \mathrm{i} 2=10 \mathrm{ohm}$
(note that for this circuit configuration, it appears that the output R (Rth) that the "top" of the dependent current source looks like an "open" so that the equivalent R is $50 \| 12.5=10 \mathrm{ohm}$).

Dr. Rasmussen

For the circuit shown, write three independent equations for the three mesh currents i_{1}, i_{2}, and i_{3}. The quantity i_{x} must not appear in the equations.

$$
\begin{aligned}
& \text { sol'n: } \alpha i_{x} \text { dependent sri } i_{n} \text { terms of } i_{1}, i_{2}, i_{3}: \\
& \qquad \alpha i_{x}=i_{1}, i_{x}=i_{3} \text { so } \alpha i_{3}=i_{1} \\
& \text { supermesh for } i_{1} \text { and } i_{3} \text { loops: } \\
& \quad i_{s}=i_{1}-i_{3} \\
& \text { outer loop for } i_{1} \text { and } i_{3} \text { ? No, because of } \alpha i_{x} \text { sri. } \\
& \text { Mesh eg'n for } i_{2}: \\
& -i_{2} R_{1}-i_{2} R_{2}-V_{s 1}=0 V
\end{aligned}
$$

Find the Thevenin's equivalent circuit at terminals abb 1 must not appear in your solution. Hint Use the node voltage method Note, $\alpha>0$.
soln. Assuming V_{s} Ls current sic.

$$
F_{h}=\frac{V_{t h}}{I_{s}}
$$

$$
\text { or } v_{1} \frac{1-\alpha}{R_{2}+R_{3}}=I_{s}
$$

$$
V_{1}=T_{4} \frac{R_{2}+R_{3}}{1-\alpha}
$$

$$
V_{\text {her }}=v_{1}, \frac{R_{3}}{R_{2}+R_{3}}=v_{s} \frac{R_{3}}{1-\alpha} \quad v \text {-divider }
$$

$$
\text { Now short } \alpha, b \text { terminals and find use flowing }
$$

$$
\text { from } a \text { to } 6 \text {. }
$$

$$
\text { Note that } R_{3} \text { will cary no current, it all }
$$

$$
\text { flows three the short, . we may Ignore } R_{3} \text {. }
$$

use node voltage to

$$
\text { find } 4
$$

$$
-v_{5}-\alpha \frac{\left[\frac{v_{1}}{R_{2}}\right]}{\frac{i_{x}}{R_{2}}}+\frac{v_{1}}{R_{2}}=\Delta A
$$

$$
\begin{aligned}
& \mathrm{Now}_{1}, l_{s}=L_{x}=\frac{V_{1}}{R_{2}}=\frac{V_{s}}{1_{0}} \quad V_{1}=V_{s} \frac{R_{2}}{1-\alpha} \\
& R_{T_{n}}=V_{\text {The }} / R_{s c}
\end{aligned}
$$

$$
\mathrm{R}_{\text {The }}=V_{\text {The }} \mu_{\mathrm{sc}}=\mathrm{R}_{3}
$$

$$
\begin{aligned}
& V_{\text {The }}=V_{, ~ \text {, }} \text { open ciresit } \\
& \text { use node -voltage method to find } v_{1}=R_{3} \\
& -\frac{L_{s}}{-I_{s}}-\frac{\frac{v_{1}}{R_{2}+R_{3}}}{e_{i x}}+\frac{V_{1}}{R_{2}+R_{3}}=o A
\end{aligned}
$$

