Problem Session #1 Problems:

1. Calculate v_1.

Solution: $v_1 = 16V$

2. Calculate i_1.

Solution: $i_1 = 48A$

3. Derive an expression for i_1. The expression must not contain more than the circuit parameters v_0, i_2, R_1, R_2, and R_3.

Solution: $i_1 = \frac{v_0}{R_1 + R_2} + i_2 \frac{R_2}{R_1 + R_2}$

4. Derive an expression for i_4. The expression must not contain more than the circuit parameters β, v_1, R_1, and R_2.

Solution: $i_4 = \frac{v_1}{R_1 + R_2}$

5. The op-amp operates in the linear mode. Using an appropriate model of the op amp, derive an expression for v_0 in terms of not more than v_0, i_2, R_1, and R_3.

Solution: $v_0 = v_0 - i_2 R_2$
1. a. (5 points)
Calculate v_1.

Solution:
The 6A source across the wire may be ignored. Its current flows through the wire but produces no V-drop. Without the 6A src we have a V-divider:

$$v_1 = \frac{36V \times 12Ω}{12Ω + 10Ω + 24Ω} = 6V, \quad \frac{v_1}{36V} = \frac{1}{6}$$

b. (5 points)
Calculate i_1.

Solution:
If we redraw the circuit, we see a current divider:

$$i_1 = \frac{80A \times 4Ω}{8Ω + 24Ω} = \frac{28A}{3}$$

2. (30 points)

Derive an expression for i_4. The expression must not contain more than the circuit parameters v_4, v_3, R_1, R_2, and R_3.

Solution:
Redraw with top as one node:

Current sum at top or bottom node? No, because we would have to define a current for source v_4.

Current at center node: $i_4 - i_3 + i_5 = 0A$

V-loop around left inner loop: $v_4 - i_3R_1 - i_2R_2 = 0V$

No v-loop for other inner loops because we would have to define V-drop for i_4.

Next larger loop is R_1, R_4, R_3: $i_3R_1 + 1R_4 - 1R_3 = 0V$

Now we have 3 eqns in 3 unknowns, and we want to find i_3. We observe, however, that the first two eqns have only two unknowns. So we don't actually need the 3rd eqn. Use 1st eqn to find $i_3 = i_2 = i_4$.

Substitute into 2nd eqn: $v_4 - i_4R_1 - (i_4 - i_3)R_3 = 0V$

or $i_1(\frac{R_3}{R_3} - R_2) = -v_4 - i_4R_2$ or $i_1 = \frac{v_4 + i_4R_2}{R_3}$.
3. (30 points)

a. Derive an expression for \(i_a \). The expression must not contain more than the circuit parameters \(\alpha, v_a, R_1, \) and \(R_2 \).

![Circuit Diagram]

b. Make at least one consistency check (other than a units check) on your expression. Explain the consistency check clearly.

Solution:

Redraw circuit

No current sums at nodes because of \(v_a \).

V-loop on left: \(v_a - i_a R_2 = 0 \) \(\Rightarrow i_a = \frac{v_a}{R_2} \)

V-loop in middle: \(i_{12} R_3 + i_{12} R_1 = 0 \) \(\Rightarrow i_{12} = -\frac{v_a}{R_1} \)

we could also just observe that \(v_a \) is across \(R_1 \) and \(R_2 \).

Now that we have found \(i_1 \) and \(i_2 \), we use a current at top node to find \(i_a \):

\[i_a + i_2 = i_i - i_1 \quad \text{GA} \quad \text{or} \quad i_a = \frac{v_a}{R_2} + \frac{v_a}{R_1} \]

or

\[i_a = \frac{-v_a}{R_1 + R_2} \quad \text{or} \quad i_a = -\frac{v_a}{\frac{1}{R_1} + \frac{1}{R_2}} \]

Solution: 3.b.

Many possible answers.

Example:

Suppose \(\alpha = 0 \). Choose other simple values:

\[v_a = -12V, \quad R_1 = 2\Omega, \quad R_2 = 2\Omega, \quad R_3 = 1\Omega \]

We see that \(i_a \) is current thru \(R_1 R_2 \)

\[R_1 R_2 = 1\Omega \cdot 2\Omega = \frac{12V}{3A} = \frac{2}{3} \Omega \]

\[i_a = -\frac{v_a}{R_1 R_2} = -\frac{12V}{\frac{2}{3} \Omega} = -18A \]

Use formula from (2) with these component values:

\[i_a = -12V \left(\frac{\frac{1}{2\Omega} + \frac{1}{2\Omega} + \frac{1}{1\Omega}}{2\Omega + 2\Omega + 1\Omega} \right) = -12V \cdot \frac{3}{2} \]

\[i_a = -18V \checkmark \]

agrees with obvious soln for the simple case.
4. (30 points)

The op-amp operates in the linear mode. Using an appropriate model of the op-amp, derive an expression for \(v_o \) in terms of no more than \(v_i \), \(i_2 \), \(R_1 \), and \(R_2 \).

Solution: Redraw without op-amp and cv drop across + and - inputs:

V-loop on left thru \(R_1 \) and cv drop:
\[i_1 R_1 + v_0 = 0 \quad \text{or} \quad i_1 = 0 \]

Current sum at node above \(R_1 \):
\[-i_1 + i_2 + i_3 = 0 \quad \text{or} \quad i_2 = i_3 \]

V-loop on right thru cv drop, \(v_2 \), \(R_2 \), and \(v_o \):
\[-v_2 + i_2 R_2 - v_o = 0 \quad \text{or} \quad i_2 = \frac{v_o - v_2}{R_2} \]

Now use \(i_3 = i_2 \).
Thus \(v_o - v_2 = i_2 R_2 \)
\[i_3 = \frac{v_o - v_2}{R_2} \quad \text{or} \quad v_o = v_2 - i_3 R_2 \]