Problem 1

Will this circuit work as an amplifier? Why or why not?

Use $|V_{BE}|=0.7$, $\beta=100$, $V_T=25\,\text{mV}$, $V_{DO}=0.7$, $V_i=1\,\text{V}$ $k_n'(W/L)=30\mu\text{A/V}^2$, ignore r_o and λ. $V_{IN}=2V+(2m)\sin\omega t$.

Diagram:

- Circuit diagram showing various components and connections.
- Labels for V_{IN}, I_{DIODE}, V_{o1}, V_{G4}, R_{in}, R_{out}, and other terminals and values.
- Resistors, capacitors, and diodes depicted with their specifications.

Problem 2

\[
\left(\frac{W}{L} \right)_1 = \left(\frac{W}{L} \right)_2 = \left(\frac{W}{L} \right)_4 = 5
\]

Use:
\[
\left(\frac{W}{L} \right)_3 = 200
\]

- \(V_i = 1 \text{V} \)
- \(k_n = 40 \mu \text{A/V}^2 \)
- \(\lambda_{1,2,3,4} = 0 \)
- \(V_{D0} = 0.6 \)
- \(n = 1 \)
- \(V_I = 25 \text{mV} \)
- Ignore \(V_A \)
- \(V_{BE} = 0.7 \)
- \(\beta = 150 \)
- \(V_{in} = 8 + 1 \text{msin} \theta \)

1. Find the following DC values:
 (a) \(I_{DIODE} \)
 (b) \(V_{G3} \)
 (c) \(V_{o1} \)
 (d) \(V_{out} \)

2. Draw the AC small-signal circuit

3. Find the AC values:
 (a) Find \(R_{in} \).
 (b) Find \(R_{out} \).
 (c) Find the overall gain, \(V_{o}/V_{IN} \). State value as a numeric value.

4. What is the maximum value that the resistor \(R_C = 4k \) at the collector of transistor Q5 be changed to and still keep the transistor active? Explain in detail how this resistor changes the overall gain?
Problem 3

Use: \(V_i = 1V \), \(k_n^* = 30\mu A/V^2 \)
\[\lambda = 0 \]
\[\left(\frac{W}{L} \right) = 10 \]
\[\left(\frac{W}{L} \right) = 100 \]
\[V_{D0} = 0.6 \]
\[n = 2 \]
\[V_T = 25mV \]
ignore \(V_A \)
\[V_{BE} = 0.7 \]
\[\beta = 150 \]
\[V_{in} = 5 + 2\sin\omega t \]

1. Find the following DC values:
 (e) \(I_{DIODE} \)
 (f) \(V_{G4} \)
 (g) \(V_{o1} \)
 (h) \(V_{out} \)

2. Draw the AC small-signal circuit

3. Find the AC parameters:
 (a) \(r_\pi \)
 (b) \(g_m \) for transistor Q4
 (c) \(g_m \) for transistor Q5
 (d) \(r_d \) for the diodes

4. Find the values for \(R_n \) and \(R_{out} \).

5. Find the gain: \(\frac{V_{o1}}{V_{IN}} \)

6. Find the gain: \(\frac{V_{out}}{V_{IN}} \)

7. Find the total instantaneous output voltage \(V_{out} \). Draw the input, \(V_i \), and the total output (DC and AC) on the same graph vs time for 2 periods. Mark the maximum and minimum peak values.

8. What is the maximum value that the resistor \(R_C = 1k \) at the collector of transistor Q5 be changed to and still keep the transistor in saturation? Explain in detail how this resistor changes the overall gain?
Problem 4

Solve the circuit when $n=1$, $V_t=25\text{mV}$, $V_i=+1\text{V}$, $k'(W/L)=2\text{mA/V}^2$, $\beta=100$, ignore V_A, $\lambda=0$, $V_{BE}=0.7\text{V}$

a. DC Values:
 i. I_{B1}, I_{C1}, I_{E1}
 ii. I_{D2}, I_{G2}, I_{S2}
 iii. I_{B3}, I_{C3}, I_{E3}
 iv. V_{B1}, V_{E1}, V_{C1}
 v. V_{G2}, V_{S2}, V_{D2}
 vi. V_{B3}, V_{E3}, V_{C3}

b. AC Values:
 i. R_{in} (do not include 100k)
 ii. R_{out} (do not include RL)
 iii. Gain: V_{out}/V_s