1. Use Fig. 5.53 (a) or the one shown below with \(V_{CC}=9\,\text{V}, \ R_C=1\,\text{k}, \ R_B=10\,\text{k}, \) and \(v_i(t)=0.001\sin wt. \)
Given: \(\beta=50, \ |V_{BE}|=0.7, \ V_T=25\,\text{mV}. \) The circuit has \(V_{BB} \) adjusted so that \(I_C=3\,\text{mA}. \) Find the total instantaneous voltage at the output \(v_C(t). \)

2. Sedra & Smith: 5.83 (for just \(\beta=\infty \)), D5.90, D5.97, 5.115 (use a hybrid \(\pi \) if desired), D5.134

3. Refer to the circuit in Fig. 5.44(a). Use \(|V_{BE}|=0.7. \) (a) Name two problems that are eliminated by using biasing techniques. (b) Use biasing techniques to establish a current \(I_E=2\,\text{mA} \) for the circuit by finding all resistor values.

4. Use \(|V_{BE}|=0.7, \ \beta=100, \ V_T=25\,\text{mV}, \ V_A=0. \) (a) Find \(R_i \) and \(R_o \) for each circuit. (b) Find the gain \(\frac{V_o}{V_s} \)