Finished Common collector (CC)

Common emitter (CE)

Bias:
\[V_{BB} = \frac{R_{B2}}{R_{B2} + R_{B1}} V_{CC} \]
\[R_{BB} = \frac{1}{\frac{1}{R_{B2}} + \frac{1}{R_{B1}}} \]
\[I_B = \frac{V_{BB} - 0.7 V}{R_{BB} + \beta R_E} \]
\[I_E = \frac{V_E}{R_E} \]
\[I_C = I_E \]

What if we put in an AC input signal:
\[i_C(t) = \frac{v_E(t)}{R_E} \]
\[V_C(t) = V_{CC} - i_C(t) R_C \]

\(v_B(t) = V_B + 0.5 V \cdot \cos \left(6280 \frac{\text{rad}}{\text{sec}} t \right) \)
\(v_E(t) = v_B(t) - 0.7 V \)

\[r_e = \frac{V_T}{I_C} = 2.5 \Omega \]

\[R_C = 3.902 \]

\[\frac{R_C}{R_E + r_e} = 4 \]

\[V_C \] is 4 times bigger and inverted

Actually, to be more correct, we should account for the small-signal resistance of the base-emitter junction.

\[r_e = 2.5 \cdot \Omega \]

Gain is really:
\[\frac{R_C}{R_E + r_e} = 3.902 \]
Common emitter (CE), continued

Input impedance: \(R_i = R_{B1} || R_{B2} || \beta (r_e + R_E) \)

Output impedance: \(R_o = R_C || r_o \)

Often neglected \(r_o = \frac{V_A}{I_C} \) \(\text{Early voltage. } \) (guess \(V_A \approx 100 \text{V} \) if no data)

AC collector resistance: \(r_c = R_C || R_L || r_o \)

More correct, use: \(r_o = \frac{A_v}{A_v + 1} \)

instead of \(r_o \) very rarely done.

Voltage gain: \(A_v = \frac{v_o}{v_b} = \frac{r_c}{r_c + R_E} \)

Current gain: \(A_i = \frac{i_o}{i_i} = \frac{r_c}{r_c + R_E \cdot R_L} = \frac{R_L}{R_L + \frac{R_i}{A_v}} \)

Low frequency corner frequencies

\[
f_{CL1} = \frac{1}{2 \pi (R_S + R_i) C_{in}}
\]

\[
f_{CL2} = \frac{1}{2 \pi (R_L + R_o) C_{out}}
\]

With bypass capacitor (CE)

This basically makes the \(R_E \) dissapear at signal frequencies (If the cap is big enough).

Input impedance: \(R_i = R_{B1} || R_{B2} || \beta r_e \) \(\text{Much lower} \)

Output impedance: \(R_o = R_C || r_o \) \(\text{Same as above, but no } r_o \text{ correction needed} \)

AC collector resistance: \(r_c = R_C || R_L || r_o \)

Voltage gain: \(A_v = \frac{v_o}{v_b} = \frac{r_c}{r_c} \)

Current gain: \(A_i = A_v \frac{R_i}{R_L} \)

Another low frequency corner frequency: \(f_{CL3} = \frac{1}{2 \pi C_E \left(\frac{1}{r_e} + \frac{1}{R_E} \right)} \)

Because \(r_e \) is so small, this will usually dominate, even when \(C_E \) is big.

Have a good & a safe Spring Break, see you in a week & a half. Go find some sun....