Assume thermal voltage: $V_T = 25 \text{ mV}$

Note for Fig. 4.8: I_B should flow out of transistor.

1. Fill in the blanks in the circuit below. You may neglect the base bias current (I_B).

 a) $V_{CC} =$ ________
 $I_C =$ ________
 $V_B =$ ________
 $V_C =$ ________
 $V_{CE} =$ ________
 $V_E =$ ________
 $R_E =$ ________

 b) $V_{CC} =$ ________
 $I_C =$ ________
 $V_B =$ ________
 $I_{R2} =$ ________
 $V_{CE} =$ ________
 $V_E =$ ________
 $R_E =$ ________

 c) $V_{CC} =$ ________
 $I_C =$ ________
 $I_{R2} =$ ________
 $V_{CE} =$ ________
 $V_E =$ ________
 $R_E =$ ________
2. a) Fill in the blanks in the circuit. Neglect I_B.

Note: You'll probably want to add a sheet of paper in order to work out the rest of this problem.

b) Is the transistor operating in the active region? Show your evidence. Yes No

c) If $\beta = 150$, how big is that I_B that we neglected?

d) Compare this value to I_{R2}. Was it reasonable to neglect I_B? (is $I_B < 10\%$ of I_{R2})

e) If we actually built this circuit, what effect would the actual I_B have on I_C? That is would I_C be lower, higher or the same as you found earlier? Hint: would V_B be higher or lower? Would V_E be higher or lower? Would I_E be higher or lower?

IC would be: lower higher same (circle one)

f) Considering only I_C and V_{CE}, how much power does this transistor dissipate or contribute?

g) Does it dissipate or contribute power? dissipate contribute (circle one)

h) If the v_s signal were applied at the base, an AC signal would also appear at the collector. How much larger would it be. (Voltage gain).

Answers

1. a) $V_E = 2.4 \text{ V}$, $V_{CE} = 5 \text{ V}$, $I_C = 1.2 \text{ mA}$, and $V_{CC} = 11 \text{ V}$
b) $V_B = 2.4 \text{ V}$, $V_{CC} = 18 \text{ V}$, $V_E = 1.7 \text{ V}$, $R_E = 425$,
$c) V_E = 2.0 \text{ V}$, $V_{CE} = 7 \text{ V}$, $R_C = 600$, and $V_B = 2.7 \text{ V}$, $I_{R2} = 1.5 \text{ mA}$, $R_1 = 6.2 \text{ k}\Omega$

2. a) $I_E := 11.57 \cdot \text{mA}$
$b) V_C := 8.51 \cdot \text{V}$
c) $I_B := 0.077 \cdot \text{mA}$
d) OK to neglect
e) lower
f) $69 \cdot \text{mW}$
g) dissipate
h) 3.73