Ex. 1 For the circuit shown:
a) Find the transfer function v_{L}.

$$
\begin{aligned}
\mathbf{V}_{\mathbf{L}}(\mathbf{s}) & =\frac{\frac{1}{\frac{1}{\mathrm{~L} \cdot \mathrm{~s}}+\frac{1}{\mathrm{R}}}}{\frac{1}{\frac{1}{\mathrm{~L} \cdot \mathrm{~s}}+\frac{1}{\mathrm{R}}}+\frac{1}{\mathrm{C} \cdot \mathrm{~s}}} \cdot \mathbf{V}_{\mathbf{S}}(\mathbf{s}) \\
& =\frac{1}{1+\frac{1}{\mathrm{C} \cdot \mathrm{~s}} \cdot\left(\frac{1}{\mathrm{~L} \cdot \mathrm{~s}}+\frac{1}{\mathrm{R}}\right)} \cdot \mathbf{V}_{\mathbf{S}}(\mathbf{s}) \\
\mathbf{H}(\mathbf{s}) & =\frac{\mathbf{V}_{\mathbf{L}}(\mathbf{s})}{\mathbf{V}_{\mathbf{S}}(\mathbf{s})}=\frac{\mathrm{s}^{2}+\frac{1}{\mathrm{C} \cdot \mathrm{R}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}}{\mathrm{~s}^{2}} \\
& =\frac{\mathrm{s}^{2}}{\mathrm{~s}^{2}+\frac{3.788 \cdot 10^{4}}{\sec } \cdot \mathrm{~s}+\frac{9.091 \cdot 10^{9}}{\sec ^{2}}}
\end{aligned}
$$

$$
=\frac{1}{1+\frac{1}{\mathrm{C} \cdot \mathrm{~s}} \cdot\left(\frac{1}{\mathrm{~L} \cdot \mathrm{~s}}+\frac{1}{\mathrm{R}}\right)} \cdot \mathbf{V}_{\mathbf{S}}(\mathbf{s}) \quad=\frac{1}{1+\frac{1}{\mathrm{C} \cdot \mathrm{~s}} \cdot \frac{1}{\mathrm{~L} \cdot \mathrm{~s}}+\frac{1}{\mathrm{C} \cdot \mathrm{~s}} \cdot \frac{1}{\mathrm{R}}} \cdot \mathbf{V}_{\mathbf{S}}(\mathbf{s}) \quad=\frac{\mathrm{s}^{2}}{\mathrm{~s}^{2}+\frac{1}{\mathrm{C} \cdot \mathrm{R}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}} \cdot \mathbf{V} \mathbf{S}(\mathbf{s})
$$

$$
\mathrm{R}:=120 \cdot \Omega
$$

$$
\mathrm{C}:=0.22 \cdot \mu \mathrm{~F}
$$

$$
\mathrm{L}:=0.5 \cdot \mathrm{mH}
$$

$$
\frac{1}{\mathrm{C} \cdot \mathrm{R}}=3.788 \cdot 10^{4} \cdot \frac{1}{\sec } \quad \frac{1}{\mathrm{~L} \cdot \mathrm{C}}=9.091 \cdot 10^{9} \cdot \frac{1}{\sec ^{2}}
$$

b) Find the characteristic equation for this circuit. $\quad 0=s^{2}+\frac{1}{\mathrm{C} \cdot \mathrm{R}} \cdot \mathrm{s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}=\mathrm{s}^{2}+\frac{3.788 \cdot 10^{4}}{\sec } \cdot \mathrm{~s}+\frac{9.091 \cdot 10^{9}}{\sec ^{2}}$ Just the denominator set to zero. The solutions of the characteristic equation are the "poles" of the transfer function.
c) Find the differential equation for v_{L}.

Cross-multiply the transfer function
d) What are the solutions to the characteristic equation?

$$
\begin{aligned}
& s_{1}=\frac{-3.788 \cdot 10^{4}}{2}+\frac{1}{2} \cdot \sqrt{\left(3.788 \cdot 10^{4}\right)^{2}-4 \cdot\left(9.091 \cdot 10^{9}\right)}=-1.894 \cdot 10^{4}+9.345 \cdot 10^{4} \mathrm{j} \\
& \mathrm{~s}_{2}=\frac{-3.788 \cdot 10^{4}}{2}-\frac{1}{2} \cdot \sqrt{\left(3.788 \cdot 10^{4}\right)^{2}-4 \cdot\left(9.091 \cdot 10^{9}\right)}=-1.894 \cdot 10^{4}-9.345 \cdot 10^{4} \mathrm{j}
\end{aligned}
$$

e) What type of response do you expect from this circuit?

The solutions to the characteristic equation are complex so the response will be underdamped.

$$
\begin{aligned}
& \mathrm{s}^{2} \cdot \mathbf{V}_{\mathbf{S}}(\mathbf{s})=\left(\mathrm{s}^{2}+\frac{1}{\mathrm{C} \cdot \mathrm{R}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}\right) \cdot \mathbf{V}_{\mathbf{L}}(\mathbf{s}) \\
& \mathrm{s}^{2} \cdot \mathbf{V}_{\mathbf{S}}(\mathbf{s})=\mathrm{s}^{2} \cdot \mathbf{V}_{\mathbf{L}}(\mathbf{s})+\frac{1}{\mathrm{C} \cdot \mathrm{R}} \cdot \mathrm{~s} \cdot \mathbf{V}_{\mathbf{L}}(\mathbf{s})+\frac{1}{\mathrm{~L} \cdot \mathrm{C}} \cdot \mathbf{V}_{\mathbf{L}}(\mathbf{s}) \\
& \frac{d^{2}}{d t^{2}} v_{S}(t)=\frac{d^{2}}{d t^{2}} v_{L}(t)+\frac{1}{C \cdot R} \cdot \frac{d}{d t} v_{L}(t)+\frac{1}{L \cdot C} \cdot v_{L}(t) \\
& \frac{d^{2}}{d t^{2}} v^{(t)}=\frac{d^{2}}{{d t^{2}}^{2}}{ }^{v} L(t)+\frac{3.788 \cdot 10^{4}}{\sec } \cdot \frac{d}{d t} v_{L}(t)+\frac{9.091 \cdot 10^{9}}{\sec ^{2}} \cdot v_{L}(t)
\end{aligned}
$$

ECE 2210 Lecture 18 notes p2

Ex. 2 Analysis of the circuit shown yields the characteristic equation below. The switch has been in the open position for a long time and is closed (as shown) at time $t=0$. Find the initial and final conditions and write the full expression for $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$, including all the constants that you find.

$$
\begin{aligned}
& \mathrm{s}^{2}+\left(\frac{1}{\mathrm{C} \cdot \mathrm{R}_{1}}\right) \cdot \mathrm{s}+\left(\frac{1}{\mathrm{~L} \cdot \mathrm{C}}\right)=0 \\
& \left(\frac{1}{\mathrm{C} \cdot \mathrm{R}_{1}}\right)=1 \cdot 10^{4} \cdot \frac{1}{\mathrm{sec}} \quad\left(\frac{1}{\mathrm{~L} \cdot \mathrm{C}}\right)=2 \cdot 10^{7} \cdot \frac{1}{\mathrm{sec}^{2}} \\
& \mathrm{~s}^{2}+10000 \cdot \frac{1}{\mathrm{sec}} \cdot \mathrm{~s}+2 \cdot 10^{7} \cdot \frac{1}{\mathrm{sec}^{2}}=0
\end{aligned}
$$

$$
s_{1}:=\left[\frac{-10000}{2}+\frac{1}{2} \cdot \sqrt{(10000)^{2}-4 \cdot\left(2 \cdot 10^{7}\right)}\right] \cdot \sec ^{-1} \quad s_{2}:=\left[\frac{-10000}{2}-\frac{1}{2} \cdot \sqrt{(10000)^{2}-4 \cdot\left(2 \cdot 10^{7}\right)}\right] \cdot \sec ^{-1}
$$

$$
s_{1}=-2764 \cdot \sec ^{-1} \quad s_{2}=-7236 \cdot \sec ^{-1} \quad s_{1} \text { and } s_{2} \text { are both real and }
$$

distinct, overdamped

Find the initial conditions:
Before the switch closed, the inductor current was: $\frac{15 \cdot \mathrm{~V}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=30 \cdot \mathrm{~mA}=\mathrm{i}_{\mathrm{L}}(0)$
Before the switch closed the capacitor voltage was: $\quad \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \cdot(15 \cdot \mathrm{~V})=9 \cdot \mathrm{~V}=\mathrm{v}_{\mathrm{C}}(0)$

When the switch is closed, the inductor is suddenly in parallel with the capacitor, and:

$$
\begin{aligned}
\mathrm{v}_{\mathrm{L}}(0)= & { }^{\mathrm{v}} \mathrm{C}^{(0)} \\
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{L}}(0)= & \frac{1}{\mathrm{~L}} \cdot \mathrm{v}_{\mathrm{L}}(0)= \\
& \frac{1}{\mathrm{~L}} \cdot 9 \cdot \mathrm{~V}=90 \cdot \frac{\mathrm{~A}}{\mathrm{sec}}
\end{aligned}
$$

Find the final condition:

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{L}}(\infty)= \\
& \frac{15 \cdot \mathrm{~V}}{\mathrm{R}_{1}}=75 \cdot \mathrm{~mA}
\end{aligned}
$$

General solution for the overdamped condition: $i^{L}(t)={ }_{i} L^{(\infty)}+B \cdot e^{s} \cdot{ }^{t}+D \cdot e^{s} 2^{t}$ Initial conditions: $\begin{aligned} \mathrm{i}_{\mathrm{L}}(0)=\frac{15 \cdot \mathrm{~V}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\mathrm{i}_{\mathrm{L}}(\infty)+\mathrm{B}+\mathrm{D} \text {, so } \quad \mathrm{B}=\mathrm{i}_{\mathrm{L}}(0)-\mathrm{i} \mathrm{L}^{(\infty)}-\mathrm{D} & =30 \cdot \mathrm{~mA}-75 \cdot \mathrm{~mA}-\mathrm{D} \\ & =-45 \cdot \mathrm{~mA}-\mathrm{D}\end{aligned}$

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i} \mathrm{~L}^{(0)}=90 \cdot \frac{\mathrm{~A}}{\mathrm{sec}}=\mathrm{s}_{1} \cdot \mathrm{~B}+\mathrm{s}_{2} \cdot \mathrm{D}=\mathrm{s}_{1} \cdot(-45 \cdot \mathrm{~mA}-\mathrm{D})+\mathrm{s}_{2} \cdot \mathrm{D}=\mathrm{s}_{1} \cdot(-45 \cdot \mathrm{~mA})-\mathrm{s}_{1} \cdot \mathrm{D}+\mathrm{s}_{2} \cdot \mathrm{D}
$$

solve for $D \& B: \quad D:=\frac{90 \cdot \frac{A}{\sec }-s_{1} \cdot(-45 \cdot m A)}{-s_{1}+s_{2}}$

$$
\mathrm{D}=7.69 \cdot \mathrm{~mA}
$$

$B:=-45 \cdot \mathrm{~mA}-\mathrm{D}$
$\mathrm{B}=-52.7 \cdot \mathrm{~mA}$

Plug numbers back in: $\quad \mathrm{i}_{\mathrm{L}}(\mathrm{t}):=75 \cdot \mathrm{~mA}-52.7 \cdot \mathrm{~mA} \cdot \mathrm{e}^{-2764 \mathrm{t}}+7.69 \cdot \mathrm{~mA} \cdot \mathrm{e}^{-7236 \mathrm{t}}$

ECE 2210 Lecture 18 notes p2

Ex. 3

Analysis of the circuit shown yields the characteristic equation and s values below. The switch has been in the closed position for a long time and is opened (as shown) at time $\mathrm{t}=0$. Find the initial and final conditions and write the full expression for $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$, including all the constants.

$$
\begin{aligned}
& 0=s^{2}+\frac{R_{1}}{\mathrm{~L}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}} \\
& \mathrm{~s}_{1}:=\left(-250+10^{4} \cdot \mathrm{j}\right) \cdot \frac{1}{\sec }, \quad \mathrm{~s}_{2}:=\left(-250-10^{4} \cdot \mathrm{j}\right) \cdot \frac{1}{\sec }
\end{aligned}
$$

Solution:

$$
\alpha:=-250 \cdot \frac{1}{\sec }
$$

$$
\omega:=10000 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}
$$

Initial conditions:

just after the switch opens

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v} \mathrm{C}^{(0)}=\frac{\mathrm{i}^{\mathrm{i}} \mathrm{C}^{(0)}}{\mathrm{C}}=\frac{100 \cdot \mathrm{~mA}}{\mathrm{C}}=8 \cdot 10^{5} \cdot \frac{\mathrm{~V}}{\mathrm{sec}}
$$

Find constants: $\quad{ }^{\mathrm{v}} \mathrm{C}^{(0)}={ }^{\mathrm{v}} \mathrm{C}^{(\infty)}+\mathrm{B}$

$$
\mathrm{B}=\mathrm{v}_{\mathrm{V}}(0)-\mathrm{v}_{\mathrm{C}}{ }^{(\infty)} \quad \mathrm{B}:=6 \cdot \mathrm{~V}-10 \cdot \mathrm{~V} \quad \mathrm{~B}=-4 \cdot \mathrm{~V}
$$

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v} C^{(0)}=\alpha \cdot \mathrm{B}+\mathrm{D} \cdot \omega
$$

$$
\mathrm{D}:=\frac{\mathrm{sec}-\alpha \cdot \mathrm{D}}{\omega}
$$

$$
\mathrm{D}=79.9 \cdot \mathrm{~V}
$$

Write the full expression for $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$, including all the constants that you find.

$$
\begin{aligned}
& \left.{ }^{v^{\prime}} C^{(t)}=\mathrm{e}^{\alpha \cdot \mathrm{t}} \cdot(\mathrm{~B} \cdot \cos (\omega \cdot \mathrm{t})+\mathrm{D} \cdot \sin (\omega \cdot \mathrm{t}))+\mathrm{v}^{(\infty}\right) \\
& \mathrm{v}_{\mathrm{C}}(\mathrm{t}):=\mathrm{e}^{-250 \mathrm{t}} \cdot\left(-4 \cdot \mathrm{~V} \cdot \cos \left(10^{4} \cdot \mathrm{t}\right)+79 \cdot 9 \cdot \mathrm{~V} \cdot \sin \left(10^{4} \cdot \mathrm{t}\right)\right)+10 \cdot \mathrm{~V}
\end{aligned}
$$

$$
\sqrt{D^{2}+B^{2}}=80 \cdot V
$$

${ }^{\mathrm{v}} \mathrm{C}^{(\mathrm{t})}$ (volts)

ECE 2210 Lecture 18 notes p4

Ex. 4 Ex. 3 Backwards, switch closes at $\mathrm{t}=0$
Characteristic eq.: $\quad 0=s^{2}+\left(\frac{1}{\mathrm{C} \cdot \mathrm{R}_{2}}+\frac{\mathrm{R}_{1}}{\mathrm{~L}}\right) \cdot \mathrm{s}+\left(1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right) \cdot \frac{1}{\mathrm{~L} \cdot \mathrm{C}}$
$\mathrm{s}_{1}:=-1.257 \cdot 10^{3} \cdot \frac{1}{\mathrm{sec}} \quad \mathrm{s}_{2}:=-1.326 \cdot 10^{5} \cdot \frac{1}{\mathrm{sec}}$
Initial conditions, same as Ex. 3 final:

Find final condition:

$$
{ }^{v} C^{(\infty)}=V_{\text {in }} \cdot \frac{R_{2}}{R_{1}+R_{2}}=6 \cdot V
$$

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v} \mathrm{C}^{(0)}=\frac{\mathrm{i}^{\mathrm{C}}(0)}{\mathrm{C}}=\frac{-166.7 \cdot \mathrm{~mA}}{\mathrm{C}}=-1.334 \cdot 10^{6} \cdot \frac{\mathrm{~V}}{\mathrm{sec}}
$$

Find constants: $\mathrm{v}_{\mathrm{C}}(0)={ }^{\mathrm{v}} \mathrm{C}^{(\infty)}+\mathrm{B}+\mathrm{D}$, so $\mathrm{B}={ }^{\mathrm{v}} \mathrm{C}^{(0)}-\mathrm{v}_{\mathrm{C}}(\infty)-\mathrm{D}=10 \cdot \mathrm{~V}-6 \cdot \mathrm{~V}-\mathrm{D}=4 \cdot \mathrm{~V}-\mathrm{D}$

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v}^{2}(0)=-1.334 \cdot 10^{6} \cdot \frac{\mathrm{~V}}{\mathrm{sec}}=\mathrm{s}_{1} \cdot \mathrm{~B}+\mathrm{s}_{2} \cdot \mathrm{D}=\mathrm{s}_{1} \cdot(4 \cdot \mathrm{~V}-\mathrm{D})+\mathrm{s}_{2} \cdot \mathrm{D} \quad=\mathrm{s}_{1} \cdot(4 \cdot \mathrm{~V})-\mathrm{s}_{1} \cdot \mathrm{D}+\mathrm{s}_{2} \cdot \mathrm{D} \\
& \mathrm{D}:=\frac{-1.334 \cdot 10^{6} \cdot \frac{\mathrm{~V}}{\sec }-\mathrm{s}_{1} \cdot(4 \cdot \mathrm{~V})}{-\mathrm{s}_{1}+\mathrm{s}_{2}} \quad \mathrm{D}=10.12 \cdot \mathrm{~V} \quad \mathrm{~B}:=4 \cdot \mathrm{~V}-\mathrm{D} \quad \mathrm{~B}=-6.12 \cdot \mathrm{~V} \\
& { }^{\mathrm{v}} \mathrm{C}^{(\mathrm{t}):=6 \cdot \mathrm{~V}-6.12 \cdot \mathrm{~V} \cdot \mathrm{e}^{-1257 \mathrm{t}}+10.12 \cdot \mathrm{~V} \cdot \mathrm{e}^{-132600 \cdot \mathrm{t}}}
\end{aligned}
$$

Ex. 5 Analysis of a circuit (not pictured) yields the characteristic equation below.
$0=s^{2}+400 \cdot s+400000$
$R:=80 . \Omega$
$\mathrm{L}:=20 \cdot \mathrm{mH}$
$\mathrm{C}:=2 \cdot \mu \mathrm{~F}$

Further analysis yields the followiing initial and final conditions:
${ }^{i} L^{(0)}=120 \cdot \mathrm{~mA}$
$v_{L}(0)=-3 \cdot \mathrm{~V}$
${ }^{v} C^{(0)}=7 \cdot V$
${ }^{\mathrm{i}} \mathrm{C}^{(0)}=-80 \cdot \mathrm{~mA}$
$\mathrm{i}_{\mathrm{L}}(\infty)=800 \cdot \mathrm{~mA}$
$\mathrm{v}_{\mathrm{L}}(\infty)=0 \cdot \mathrm{~V}$
${ }^{\mathrm{v}} \mathrm{C}^{(\infty)}=12 \cdot \mathrm{~V}$
${ }^{\mathrm{i}} \mathrm{C}^{(\infty)}=0 \cdot \mathrm{~mA}$

Write the full expression for $i_{L}(t)$, including all the constants that you find. $\quad i_{L}(t)=$?

Solution:

$$
\frac{400}{2}=200 \quad \frac{\sqrt{400^{2}-4 \cdot 400000}}{2}=600 \mathrm{j}
$$

$s_{1}:=(-200+600 \cdot j) \cdot \frac{1}{\sec } \quad$ and $\quad s_{2}:=(-200-600 \cdot j) \cdot \frac{1}{\sec }$
$\alpha:=\operatorname{Re}\left(\mathrm{s}_{1}\right) \quad \alpha=-200 \cdot \sec ^{-1}$
$\omega:=\operatorname{Im}\left(\mathrm{s}_{1}\right)$
$\omega=600 \cdot \sec ^{-1}$

Initial slope: $\quad \frac{\mathrm{d}_{2}}{\mathrm{dt}} \mathrm{L}^{(0)}=\frac{{ }^{\mathrm{V}} \mathrm{L}(0)}{\mathrm{L}}=\frac{-3 \cdot \mathrm{~V}}{\mathrm{~L}}=-150 \cdot \frac{\mathrm{~A}}{\sec }$
General solution for the underdamped condition: $\mathrm{i}_{\mathrm{L}}(\mathrm{t})={ }^{\mathrm{i}} \mathrm{L}^{(\infty)}+\mathrm{e}^{\alpha \mathrm{t}} \cdot(\mathrm{B} \cdot \cos (\omega \cdot \mathrm{t})+\mathrm{D} \cdot \sin (\omega \cdot \mathrm{t}))$
Find constants: $\quad \mathrm{i}_{\mathrm{L}}(0)=\mathrm{i}_{\mathrm{L}}(\infty)+\mathrm{B}$
$B=\mathrm{i}_{\mathrm{L}}(0)-\mathrm{i}_{\mathrm{L}}{ }^{(\infty)}$
B $:=120 \cdot \mathrm{~mA}-800 \cdot \mathrm{~mA}$
$\mathrm{B}=-680 \cdot \mathrm{~mA}$
$\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{L}}(0)=\alpha \cdot \mathrm{B}+\mathrm{D} \cdot \omega \quad \mathrm{D}:=\frac{-150 \cdot \frac{\mathrm{~A}}{\sec }-\alpha \cdot B}{\omega}$
$\mathrm{D}=-476.667 \cdot \mathrm{~mA}$

Write the full expression for $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$, including all the constants that you find.

$$
\mathrm{i}_{\mathrm{L}}(\mathrm{t}):=800 \cdot \mathrm{~mA}+\mathrm{e}^{-200 \mathrm{t}} \cdot(-680 \cdot \mathrm{~mA} \cdot \cos (600 \cdot \mathrm{t})-477 \cdot \mathrm{~mA} \cdot \sin (600 \cdot \mathrm{t}))
$$

Ex. 6

Analysis of a circuit (not pictured) yields the characteristic equation below.
$0=s^{2}+800 \cdot s+160000$
$\mathrm{R}:=60 \cdot \Omega$
$\mathrm{L}:=350 \cdot \mathrm{mH}$
$\mathrm{C}:=20 \cdot \mu \mathrm{~F} \quad \mathrm{~V}_{\text {in }}:=12 \cdot \mathrm{~V}$

Further analysis yields the following initial and final conditions:
${ }^{i} L^{(0)}=30 \cdot m A$
$v_{L}(0)=-7 \cdot V$
${ }^{v} C^{(0)}=5 \cdot \mathrm{~V}$
${ }^{\mathrm{i}} \mathrm{C}^{(0)}=70 \cdot \mathrm{~mA}$
${ }^{\mathrm{i}} \mathrm{L}^{(\infty)}=90 \cdot \mathrm{~mA}$
$\mathrm{v}_{\mathrm{L}}(\infty)=0 \cdot \mathrm{~V}$
${ }^{\mathrm{v}} \mathrm{C}^{(\infty)}=12 \cdot \mathrm{~V}$
${ }^{\mathrm{i}} \mathrm{C}^{(\infty)}=0 \cdot \mathrm{~mA}$

Write the full expression for $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$, including all the constants that you find. $\quad{ }^{\mathrm{i}} \mathrm{L}^{(\mathrm{t})}=$?
Include units in your answer

Solution:

$$
\frac{-800+\sqrt{800^{2}-4 \cdot 160000}}{2}=-400 \quad \mathrm{~s}_{1}:=-400 \cdot \frac{1}{\mathrm{sec}} \quad \mathrm{~s}_{2}:=-400 \cdot \frac{1}{\mathrm{sec}} \quad \begin{aligned}
& \mathrm{s}_{1} \text { and } \mathrm{s}_{2} \text { are the same, } \\
& \text { critically damped }
\end{aligned}
$$

$$
\text { Initial slope: } \quad \frac{d}{d t} \mathrm{i}^{(0)}=\frac{\mathrm{v}_{\mathrm{L}}(0)}{\mathrm{L}}=\frac{-7 \cdot \mathrm{~V}}{\mathrm{~L}}=-20 \cdot \frac{\mathrm{~A}}{\mathrm{sec}}
$$

General solution for the critically damped condition: $\mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{i}_{\mathrm{L}}(\infty)+\mathrm{B} \cdot \mathrm{e}^{\mathrm{s}_{1} \cdot \mathrm{t}}+\mathrm{D} \cdot \mathrm{t} \cdot \mathrm{e}^{\mathrm{s} 2 \cdot \mathrm{t}}$
Find constants: $\quad \mathrm{i}_{\mathrm{L}}(0)=\mathrm{i}_{\mathrm{L}}(\infty)+\mathrm{B}$
$B=\mathrm{i}_{\mathrm{L}}(0)-\mathrm{i} \mathrm{L}^{(\infty)}$
B : $=30 \cdot \mathrm{~mA}-90 \cdot \mathrm{~mA}$
$\mathrm{B}=-60 \cdot \mathrm{~mA}$
$\frac{d}{d t} \mathrm{i}^{(0)}=B \cdot \mathrm{~s}+\mathrm{D}$
$D:=-20 \cdot \frac{A}{\sec }-B \cdot s_{1}$
$\mathrm{D}=-44 \cdot \frac{\mathrm{~A}}{\sec }$

Write the full expression for $i_{L}(t)$, including all the constants that you find.

$$
\mathrm{i}_{\mathrm{L}}(\mathrm{t}):=90 \cdot \mathrm{~mA}-60 \cdot \mathrm{~mA} \cdot \mathrm{e}^{-\frac{400}{\mathrm{sec}} \cdot \mathrm{t}}-44 \cdot \frac{\mathrm{~A}}{\mathrm{sec}} \cdot \mathrm{t} \cdot \mathrm{e}^{-\frac{400}{\mathrm{sec}} \cdot \mathrm{t}}
$$

Ex 1. The switch at right has been in the open position for a long time and is closed (as shown) at time $t=0$.

a) What are the final conditions of i_{L} and the v_{C} ?

b) Find the initial condition and intial slope of i_{L} so that you could find all the constants in $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$.

Don't find $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ or it's constants, just the initial conditions.

Just after the switch closes:

c) Find the initial condition and intial slope of v_{C} so that you could find all the constants in $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$. Don't find $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$ or it's constants, just the initial conditions.

$$
\mathrm{v}_{\mathrm{C}}(0)=\mathrm{V}_{\mathrm{S}} \cdot \frac{\mathrm{R}_{3}}{\mathrm{R}_{1}+\mathrm{R}_{3}}=6 \cdot \mathrm{~V}
$$

$$
\frac{\mathrm{d}}{\mathrm{di}} \mathrm{v} \mathrm{C}^{(0)}=\frac{225 \cdot \mathrm{~mA}}{\mathrm{C}}=150000 \cdot \frac{\mathrm{~V}}{\mathrm{sec}}
$$

Systems

Now that we' ve developed the concept of the transfer function, we can now develop system block diagrams using blocks which contain transfer functions.

Consider a circuit:

$$
\begin{aligned}
\mathbf{H}(\mathrm{s})=\frac{\mathbf{V}_{\mathbf{o}}(\mathrm{s})}{\mathbf{V}_{\mathbf{i n}}(\mathrm{s})} & =\frac{\mathrm{R}+\mathrm{L}_{2} \cdot \mathrm{~s}}{\mathrm{R}+\mathrm{L}_{1} \cdot \mathrm{~s}+\mathrm{L}_{2} \cdot \mathrm{~s}}=\frac{\mathrm{R}+\mathrm{L}_{2} \cdot \mathrm{~s}}{\mathrm{R}+\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right) \cdot \mathrm{s}} \\
& =\frac{\mathrm{L}_{2} \cdot \mathrm{~s}+\mathrm{R}}{\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right) \cdot \mathrm{s}+\mathrm{R}}
\end{aligned}
$$

This could be represented in as a block operator:

Transfer functions can be written for all kinds of devices and systems, not just electric circuits and the input and output do not have to be similar. For instance, the potentiometers used to measure angular position in the lab servo can be represented like this:

$$
\theta_{\text {in }}(\mathrm{s}) \longrightarrow \mathrm{Kp}=0.7 \cdot \frac{\mathrm{~V}}{\mathrm{rad}}=0.012 \cdot \frac{\mathrm{~V}}{\mathrm{deg}} \quad>\mathrm{V}_{\text {out }(\mathrm{s})=\mathrm{K}_{\mathrm{p}} \cdot \theta_{\text {in }}(\mathrm{s})}
$$

In general:

$$
\mathbf{H}(\mathrm{s})=\frac{\mathbf{X}_{\text {out }^{(s)}}}{\mathbf{X}_{\mathbf{i n}^{(s)}}}
$$

$\mathbf{X}_{\text {in }}$ and $\mathbf{X}_{\text {out }}$ could be anything from small electrical signals to powerful mechanical motions or forces.

Two blocks with transfer functions $\mathbf{A}(\mathrm{s})$ and $\mathbf{B}(\mathrm{s})$ in a row would look like this:

The two blocks could be replaced by a single equivalent block:

$$
\mathbf{X}_{\mathbf{i n}}(\mathrm{s}) \cdot \mathbf{A}(\mathrm{s})
$$

ECE 2210 Lecture 19 notes p3

Summer blocks can be used to add signals:

or subtract signals:

OR

A feedback loop system is particularly interesting and useful:

The entire loop can be replaced by a single equivalent block:
Note that I' ve begun to drop the (s)

$\mathbf{A}(\mathrm{s}) \cdot \mathbf{B}(\mathrm{s}) \quad$ is called the "loop gain" or "open loop gain"

ECE 2210 Lecture 19 notes p4

Negative feedback is more common and is used as a control system:

This is called a "closed loop" system, whereas a a system without feedback is called "open loop". The term "open loop" is often used to describe a system that is out of control.

The servo used in our lab can be represented by:

$$
\mathbf{H}(\mathrm{s})=\frac{\theta_{\text {out }^{(s)}}{ }^{\theta_{\mathbf{i n}}(\mathrm{s})}}{{ }^{(s)}}=\frac{\mathrm{G} \cdot \mathrm{~K}_{\mathrm{T}} \cdot \mathrm{~K}_{\mathrm{p}}}{\mathrm{~s} \cdot\left[\mathrm{~J} \cdot \mathrm{~L}_{\mathrm{a}} \cdot \mathrm{~s}^{2}+\left(\mathrm{J} \cdot \mathrm{R}_{\mathrm{a}}+\mathrm{B}_{\mathrm{m}} \cdot \mathrm{~L}_{\mathrm{a}}\right) \cdot \mathrm{s}+\left(\mathrm{B}_{\mathrm{m}} \cdot \mathrm{R}_{\mathrm{a}}+\mathrm{K}_{\mathrm{T}} \cdot \mathrm{~K}_{\mathrm{V}}\right)\right]+\mathrm{K}_{\mathrm{p}} \cdot \mathrm{G} \cdot \mathrm{~K}_{\mathrm{T}}}
$$

