ECE 2200/10 Lecture 1 Introduction to Electrical Engineering for non-majors

- 2200 = 1/2 semester (Mining, Mat. Sci.) ECE 2200 Without the Physics is hard, Plan on it!
 - 2200, Decide today when you want to take the **final**: Final is **after** official end of class unless you ask for different accomodation today.
- 2210 = Full semester (Mechanical, Chemical, etc.)

2210 Final wednesday, December 15, 8:00am

Make sure you are registered for the <u>right</u> <u>class</u> (2200 or 2210) and that you have the right syllabus. A. Stolp 12/30/11

8/24/15

Friday labs: Will have to attend lab and watch video in same week or attend on reading day.

BOTH

Regularly check the calendar on for this class on Canvas. Watch your Canvas anouncements. Be prepared to download and print weekly packets, which include notes and homeworks.

Homeworks are due by 11:59 pm of the due date on Canvas. Make sure you have a way to scan your paper or do your work on a tablet so that you will can submit a .pdf file

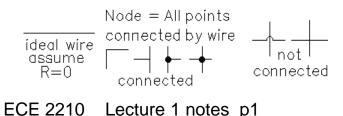
WARNING: HWs are often due on non-class days.

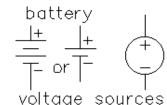
Most labs start next week. Need a lab notebook and a U-card with \$16 for labs.

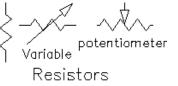
How to survive

 Easiest way to get through school is to actually learn and retain what you are asked to learn. Even if you're too busy, don't lose your good study practices. What you "just get by" on today will cost you later.

Don't fall for the "I'll never need to know this" trap. Sure, much of what you learn you may not use, but you will need some of it, some day, either in the current class, future classes, or maybe sometime in your career. Don't waste time second-guessing the curriculum, It'll still be easier to just do your best to learn and retain what is covered.

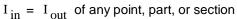

2. Don't fall for the "traps".

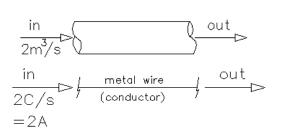

Homework answers, Problem session solutions, Posted solutions, Lecture notes.

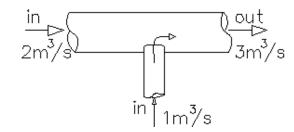

- 3. KEEP UP! Use calendar.
- 4. Make "permanent notes" after you've finished a subject or section and feel that you know it.

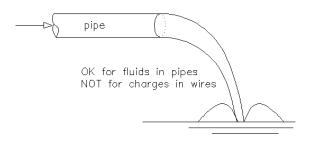
Lecture

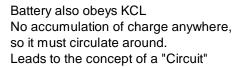
Basic electrical quantities	Letter used	<u>Units</u>	Fluid Analogy
Charge, actually moves	Q	Coulomb (C)	m^3
Current, like fluid flow	I = $\frac{Q}{\sec}$	Amp (A, mA, μA,)	$\frac{m^3}{sec}$
Voltage, like pressure	V or E	volt (V, mV, kV,)	$Pa = 1 \cdot \frac{N}{m^2}$
Resistance -///-	$R = \frac{V}{I}$	Ohm (Ω , k Ω , M Ω ,)	
Conductance -///-	$G = \frac{1}{R}$	Siemens (S, also mho, old unit)	
Power = energy/time	$P = V \cdot I$	Watt (W, mW, kW, MW,)	W
Symbols (ideal)			

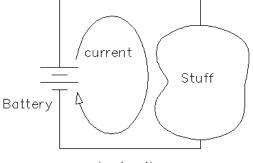


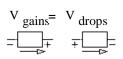


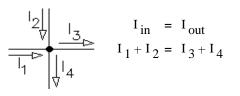


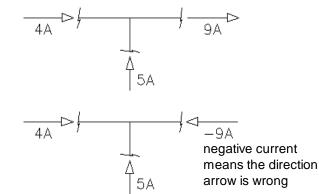

ECE 2210 Lecture 1 notes p2


KCL, Kirchhoff's Current Law







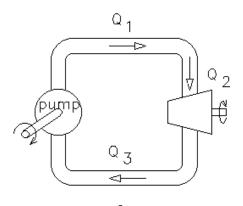

Voltage is like pressure KVL, Kirchhoff's Voltage Law

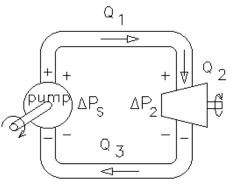
around any loop

Conductors

Nonconductors

Massless fluid in our analogy No gravity effects No Bernoulli effects

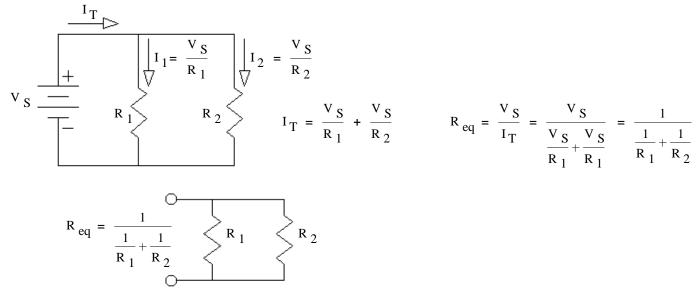

Reasonable because:


Electron mass is

 $9.11 \cdot 10^{-31} \cdot kg$

Election charge is

 $-1.6 \cdot 10^{-16} \cdot C$ Negative charge flows in negative direction

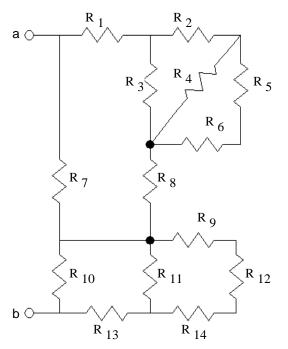


ECE 2210 Lectures 2 & 3 notes

1/28/06, 9/5/08 Ohm's law (resistors) stors) $V = I \cdot R$ $V = I \cdot R$ $R = \frac{V}{r}$ $R = \frac{V}{r}$ $V = I \cdot R$ $R = \frac{V}{r}$ $R = \frac{V}{r}$ R Power $\frac{m^3}{\sec} \qquad \text{pressure} \quad \frac{N}{m^3} \qquad \text{flow x pressure:} \quad \frac{m^3}{\sec} \cdot \frac{N}{m^2} = \frac{m}{\sec} \cdot \frac{N}{1} = \frac{N \cdot m}{\sec} = \frac{\text{Joule}}{\sec} = W = \text{power}$ flow power $P = I \cdot V$ same for electricity $P_{IN} = P_{OUT}$ $|N \qquad OUT$ - + + + - -Power dissipated by resistors: $P = V \cdot I = \frac{V^2}{R} = I^2 \cdot R$ Series Resistors

Resistors are in series if and only if exactly the same current flows through each resistor.

Parallel Resistors



Resistors are in parallel if and only if the same voltage is across each resistor.

ECE 2210 Lectures 2 & 3 notes p1

A. Stolp

Series and Parallel

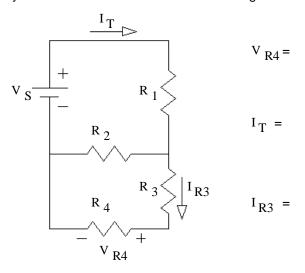
All resistor-only networks can be reduced to a single equivalent, but not always by means of series and parallel concepts.

Voltage Divider

series:
$$R_{eq} = R_1 + R_2 + R_3 + \dots$$

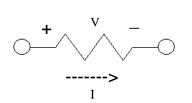
Exactly the **same current** through each resistor Voltage divider: $V_{Rn} = V_{total} \cdot \frac{R_n}{R_1 + R_2 + R_3 + \dots}$

Current Divider


parallel: R_{eq} =

 $\frac{\overline{1}}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$ $R_1 \qquad R_2 \qquad R_3 \qquad R_3$

Exactly the **same voltage** across each resistor current divider:


 $I_{Rn} = I_{total} \cdot \frac{\frac{1}{R_n}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots}$

May have to combine some resistors first to get series and parallel resistors to use with divider expressions.

Sources

battery

or

Battery

Ι

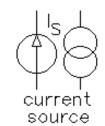
voltage sources

ΗV

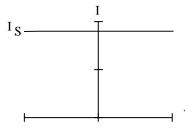
Cell

Ι

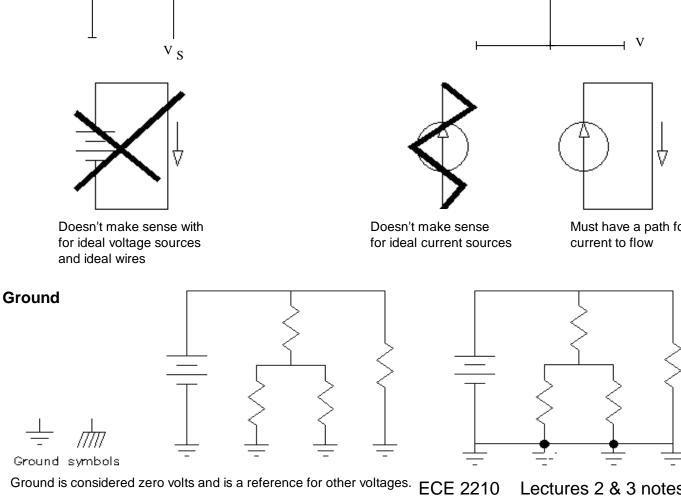
small R


med R

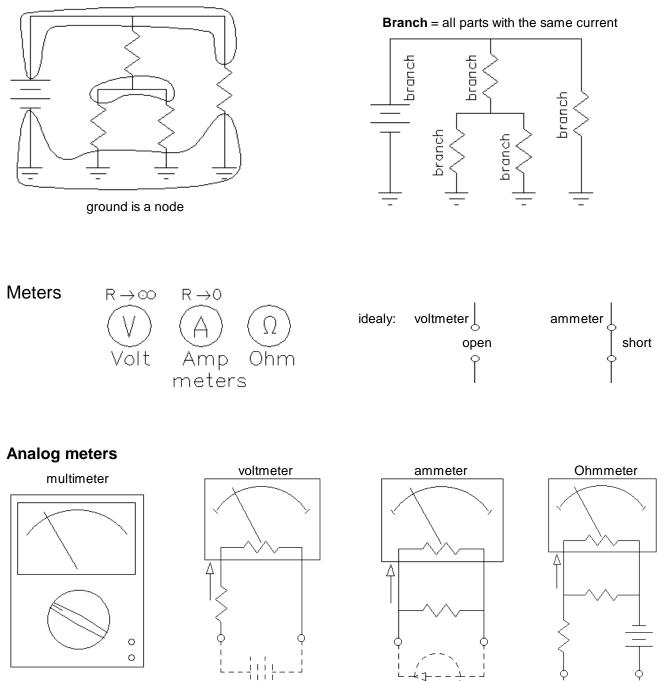
-big R

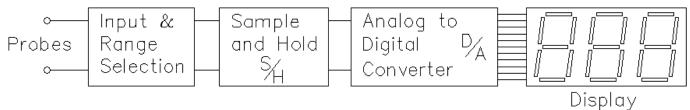

V

ECE 2210 Lectures 2 & 3 notes p3


 $R = \frac{1}{\text{slope}} = \frac{\Delta V}{\Delta I}$

Less intuitive, less like sources we are used to seeing.


Must have a path for the


Lectures 2 & 3 notes p3

Nodes & Branches

Node = all points connected by wire, all at same voltage (potential)

Digital meter

ECE 2210 Lectures 2 & 3 notes p4

Name

ECE 2210 / 00 homework # 1

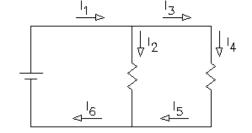
Scan your homework and convert to a pdf file. Turn in on Canvas. Homework is due by 11:59 p.m. on the due date.

The following problems are not meant to be hard. You should be able to do most of them in your head with no special formulas or calculations. In fact you should find them rather dumb and trivial. That's the point, I want to drill these concepts into your head so that you'll find them easy.

Due: Mon, 8/30/21

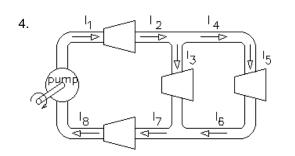
The figure at right shows a hydraulic system with a pump that converts rotational energy to fluid energy and two turbines which convert that energy back to rotational energy. Do NOT assume that the turbines are equal in size. This is a closed system containing an incompressible fluid with no places for that fluid to collect; i.e. flow in = flow out of any point or object. Kirchhoff's current law applies. The volumetric fluid flows are indicated by the arrows.

$$I_1 := 0.01 \cdot \frac{m^3}{s}$$
 $I_2 := 0.007 \cdot \frac{m^3}{s}$

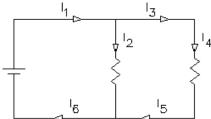

$$I_3 = _$$
 $I_4 = _$ $I_5 = _$ $I_6 =$

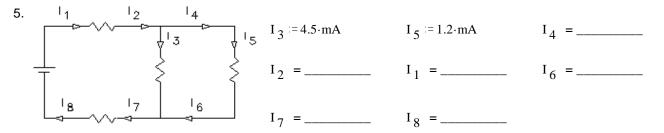
2. The figure at right shows an electrical circuit with a battery that converts chemical energy to electrical energy and two resistors which convert that electrical energy to heat energy. Do NOT assume that the resistors are equal in size. *All* electrical circuits are closed systems containing incompressible charges with no places for those charges to collect; i.e. flow in = flow out of any point or object. Kirchhoff's current law applies. The electrical currents are indicated by the arrows.

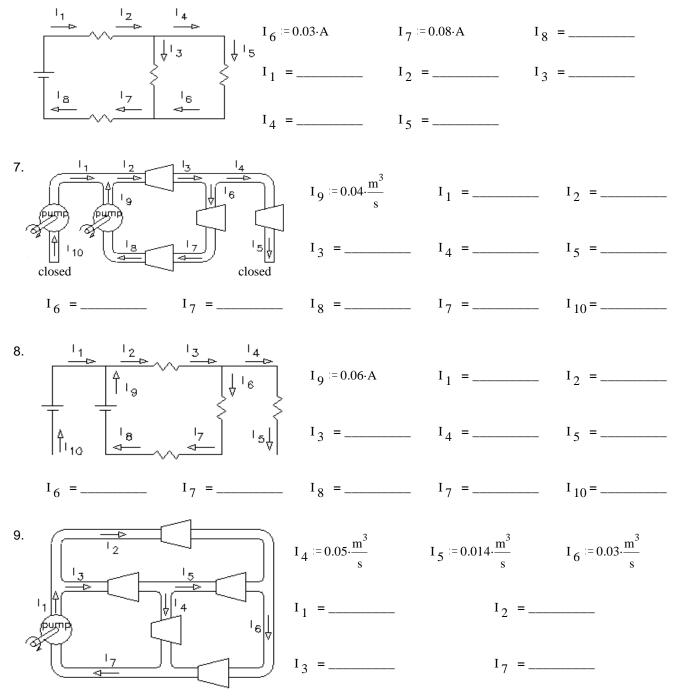
$$I_1 = 0.01 \cdot A$$
 $I_2 = 0.007 \cdot A$

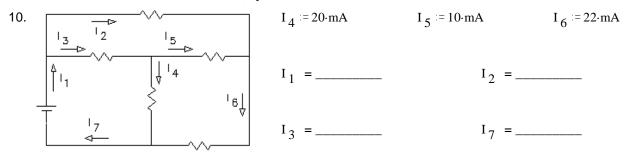

 $I_3 = _$ $I_4 = _$ $I_5 = _$ $I_6 = _$

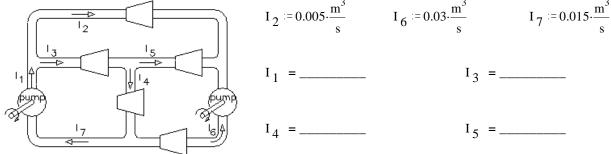
3. The figure at right shows a similar electrical circuit only now the electrical currents are indicated by the arrows next to the wires. This is a more common way to show the current flow because a little arrow in the wire is too easily confused with the electrical symbol for a diode. You'll learn about diodes later.

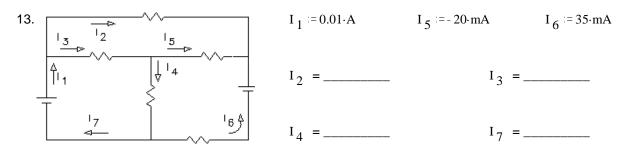


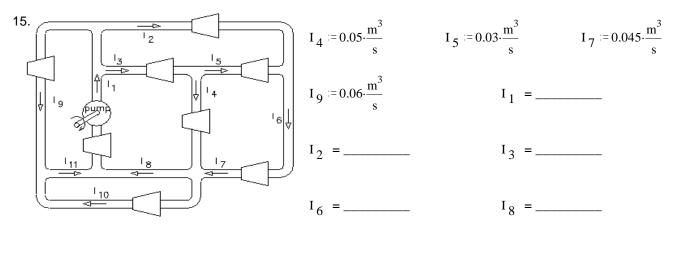

 $I_2 = 20 \cdot mA$ $I_5 = 14 \cdot mA$



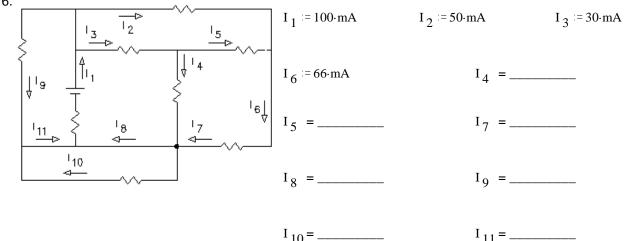



6. Again, a similar electrical circuit with the electrical current arrows in the more common position, next to the wires.


ECE 2210 / 00 homework # 1, p.2


11. Careful here, there are now two pumps. Also, given the flow arrows shown, one or more of the flows must come out **negative**.

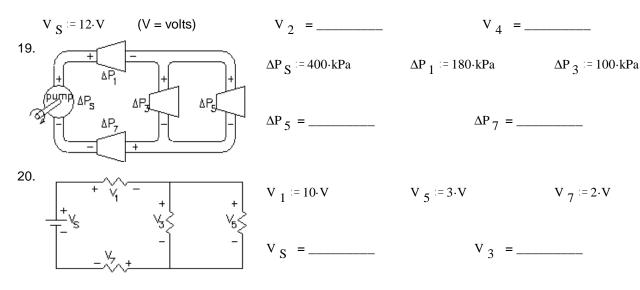
12. What does a negative fluid flow physically mean?


14. What does a negative electrical current physically mean?

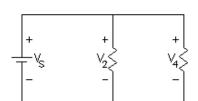
I ₁₀ = _____ I ₁₁ = _____

ECE 2210 / 00 homework # 1, p.3

16.

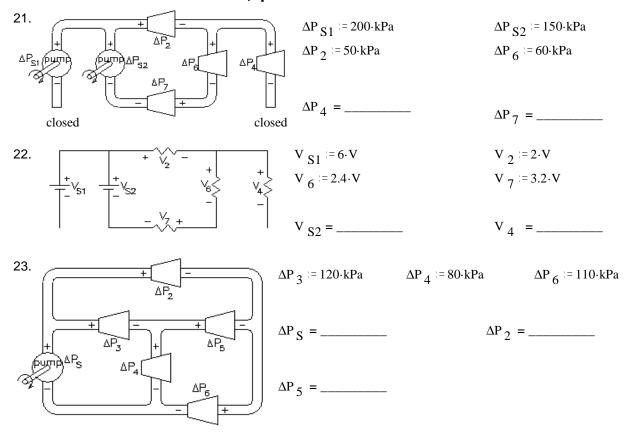

17. The figure at right shows the pressure differentials across elements in a hydraulic system. The side indicated by the + sign is the higher pressure side. Conversely, - indicates the lower pressure. ΔP_S is the pressure difference supplied by the pump (S for <u>S</u>ource). ΔP_2 is the pressure difference driving the left turbine and ΔP_4 is the pressure difference driving the right turbine. Assume no pressure losses or discontinuities in the pipes, joints, or corners; i.e. all connected pipes are at exactly the same pressure. Finally, the fluid has no mass, so gravity and Bernoulli can go take a hike.

$$\Delta P_{S} = 12 \cdot \frac{N}{m^2} = 12 \cdot Pa$$


Yes, I know that these are ridiculously low pressures for a hydraulic system.

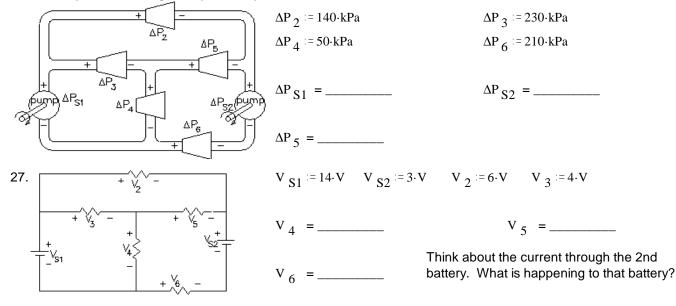
 $\Delta P_2 =$ _____

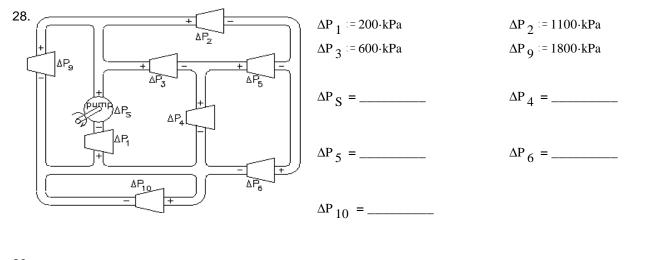
18. The figure at right shows the voltage differentials across elements in an electrical circuit. The side indicated by the + sign is the higher voltage side. Conversely, - indicates the lower voltage. V_S is the voltage supplied by the battery. V_2 is the voltage across the left resistor and V_4 is the voltage across the right resistor. You may assume no voltage drops across any of the wires or connections in practically all electrical schematics; i.e. all connected wires are at exactly the same voltage (electrical potential).

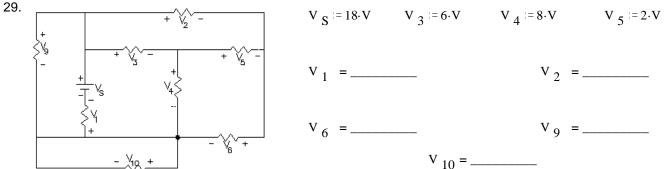

ECE 2210 / 00 homework # 1, p.4

I₁₁ = _____

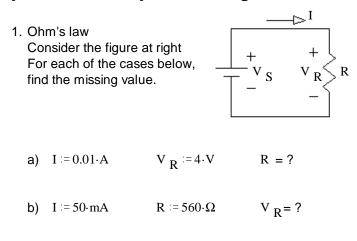
ΔP,


ΔP




24. What does a negative pressure difference physically mean?

26. Watch your + and - signs very carefully now.


Answers

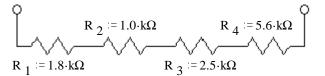
1. $I_3 = I_4 = I_5 = 0.003 \cdot \frac{m^3}{s}$, $I_6 = 0.01 \cdot \frac{m^5}{s}$ **2.** $I_3 = I_4 = I_5 = 0.003 \cdot A$, $I_6 = 0.01 \cdot A$ **3.** $I_6 = I_1 = 34 \cdot mA$, $I_3 = I_4 = 14 \cdot mA$ **4.** $I_4 = I_6 = 0.001 \cdot \frac{m^3}{s}$, $I_1 = I_2 = I_7 = I_8 = 0.005 \cdot \frac{m^3}{s}$ **5.** $I_4 = I_6 := 1.2 \cdot \text{mA}$, $I_1 = I_2 = I_7 = I_8 := 5.7 \cdot \text{mA}$ **6.** $I_1 = I_2 = I_8 := 80 \cdot \text{mA}$, $I_3 := 50 \cdot \text{mA}$, $I_4 = I_5 := 30 \cdot \text{mA}$ **7.** $I_1 = I_{10} = I_4 = I_5 := 0 \cdot \frac{m^3}{s}$, $I_2 = I_3 = I_7 = I_8 := 0.04 \cdot \frac{m^3}{s}$ **8.** $I_1 = I_{10} = I_4 = I_5 := 0 \cdot A$, $I_2 = I_3 = I_7 = I_8 := 0.04 \cdot \frac{m^3}{s}$ $I_2 = I_3 = I_7 = I_8 = 0.06 A$ **9.** $I_1 = I_7 = 0.080 \cdot \frac{m^3}{s}, I_2 = 0.016 \cdot \frac{m^3}{s}, I_3 = 0.064 \cdot \frac{m^3}{s}$ **10.** $I_1 = I_7 = 42 \cdot mA^3, I_2 = 12 \cdot mA^3, I_3 = 30 \cdot mA^3$ **11.** $I_1 = 0.015 \cdot \frac{m^3}{s}$, $I_3 = 0.010 \cdot \frac{m^3}{s}$, $I_4 = 0.045 \cdot \frac{m^3}{s}$, $I_5 = -0.035 \cdot \frac{m^3}{s}$ **13.** $I_2 = -15 \cdot mA$, $I_3 = 25 \cdot mA$, $I_4 = 45 \cdot mA$, $I_7 = 10 \cdot mA$ **14.** " **15.** $I_1 := 0.155 \cdot \frac{m^3}{s}$, $I_2 := 0.015 \cdot \frac{m^3}{s}$, $I_3 := 0.080 \cdot \frac{m^3}{s}$, $I_6 := 0.045 \cdot \frac{m^3}{s}$, $I_8 := 0.095 \cdot \frac{m^3}{s}$, $I_{10} := 0 \cdot \frac{m^3}{s}$, $I_{11} := 0.060 \cdot \frac{m^3}{s}$ **16.** $I_4 := 14 \cdot mA$, $I_5 := 16 \cdot mA$, $I_7 := 66 \cdot mA$, $I_8 := 80 \cdot mA$, $I_9 := 20 \cdot mA$, $I_{10} := 0 \cdot mA$, $I_{11} := 20 \cdot mA$ **17.** $\Delta P_2 = \Delta P_4 = 12 \cdot Pa$ **18.** $V_2 = V_4 = 12 \cdot V$ **19.** $\Delta P_5 = 100 \cdot kPa$, $\Delta P_7 = 120 \cdot kPa$ **20.** V $_{\mathbf{S}} = 15 \cdot \mathbf{V}$, V $_{\mathbf{3}} = 3 \cdot \mathbf{V}$ **22.** V $_{S2} = 7.6 \cdot V$, V $_4 = 0 \cdot V$ **21.** $\Delta P_4 = 0 \cdot kPa$, $\Delta P_7 = 40 \cdot kPa$ **23.** $\Delta P_{S} = 200 \cdot kPa$, $\Delta P_{2} = 90 \cdot kPa$, $\Delta P_{5} = -30 \cdot kPa$ 24. The actual + & - should be reversed from those on drawing **25.** $V_{S} = 6 \cdot V$, $V_{2} = 2.8 \cdot V$, $V_{4} = 3.7 \cdot V$ **26.** $\Delta P_{S1} = 280 \cdot kPa$, $\Delta P_{S2} = 350 \cdot kPa$, $\Delta P_5 = -90 \cdot kPa$ **27.** $V_4 := 10 \cdot V$, $V_5 := 2 \cdot V$, $V_6 := -5 \cdot V$ battery is charging **28.** $\Delta P_S := 2000 \cdot kPa$, $\Delta P_4 := 1200 \cdot kPa$, $\Delta P_5 := 500 \cdot kPa$, $\Delta P_6 := 700 \cdot kPa$, $\Delta P_{10} := 0 \cdot kPa$ **29.** $V_1 := 4 \cdot V$, $V_2 := 8 \cdot V$, $V_6 := 6 \cdot V$, $V_9 := 14 \cdot V$, $V_{10} := 0 \cdot V$

ECE 2210 / 00 homework # 1, p.6

ECE 2210 / 00 homework # 2

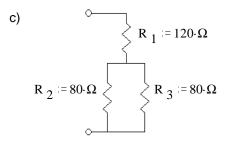
You may do the following problems here or on your own paper. But, since you have the answers, **you MUST show your work to get credit**.

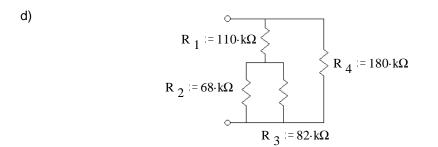
- c) $V_R = 12 \cdot V$ $R = 1.5 \cdot k\Omega$ I = ?
- 2. Power and Ohm's law. Same circuit as above. For each of the cases below, find the missing values.


a) $I := 5 \cdot mA$	$\mathbf{R} := 2 \cdot \mathbf{k} \mathbf{\Omega}$	V _R =	$P_R =$
b) $V_{R} = 25 \cdot V$	$\mathbf{R} := 100 \cdot \boldsymbol{\Omega}$	Ι =	P _R =
c) $V_{R} = 20 \cdot V$	$I := 0.01 \cdot A$	R =	P _R =

Ignore the fact that the following items run on AC


- d) $P_R = 900 \cdot W$ $V_R = 120 \cdot V$ I = R =Toaster
- e) $P_R := 1500 \cdot W$ $R := 9.6 \cdot \Omega$ $I = V_S =$ Hair drier


f)
$$P_R := 2500 \cdot W$$
 I := 10.5 · A R =
Electric oven


 Find the equivalent resistance a) of each of these networks, i.e. what would an ohmmeter read if hooked to the terminals.

 $V_{S} =$

e)

$$R_1 := 150 \cdot \Omega$$

 $R_3 := 22 \cdot \Omega$

<u>Answers</u>

1.	a)	$\mathbf{R} := 400 \cdot \mathbf{\Omega}$	b)	$V_{R} = 28 \cdot V$	c) $I := 8 \cdot mA$
2.	a)	$V_{R} = 10 \cdot V P_{R} = 50 \cdot mW$	b)	$I := 0.25 \cdot A P_R := 6.25 \cdot W$	c) $R := 2.0 \cdot k\Omega$ $P_R := 200 \cdot mW$
	d)	$I = 7.5 \cdot A$ $R = 16 \cdot \Omega$	e)	$I := 12.5 \cdot A V_{S} := 120 \cdot V$	f) R := 22.7 $\cdot \Omega$ V S := 238 $\cdot V$
3.	a)	R _{eq} = $10.9 \cdot k\Omega$	b)	$R_{eq} = 390 \cdot \Omega$	c) R _{eq} = $160 \cdot \Omega$
	d)	$R_{eq} = 81 \cdot k\Omega$	e)	$R_{eq} = 51.3 \cdot \Omega$	CE 2210 / 00 homework # 2

p.2