ECE 2210/00 Capacitor Lecture Notes
Now that we have voltages and currents which can be functions of time, it's time to introduce the capacitor and the inductor.

Electrical equivalent:

$$
\mathrm{C}=\varepsilon \cdot \frac{\mathrm{A}}{\mathrm{~d}}=\frac{\mathrm{Q}}{\mathrm{~V}}=\frac{\mathrm{dq}}{\mathrm{dv}}
$$

Units: \quad farad $=\frac{\text { coul }}{\text { volt }}=\frac{\mathrm{amp} \cdot \mathrm{sec}}{\text { volt }}$

Basic equations \& concepts you should know:

$$
{ }^{\mathrm{i}} \mathrm{C}=\mathrm{C} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{v} \mathrm{C}
$$

Energy stored in electric field: $\quad \mathrm{W}_{\mathrm{C}}=\frac{1}{2} \cdot \mathrm{C} \cdot \mathrm{V}_{\mathrm{C}}{ }^{2}$

Capacitor voltage cannot change instantaneously

Capacitor Construction

Insulator (dielectric)
Capacitors are typically classified by the material used for insulation. The insulation determines some of the non-ideal characteristics.
See Table 3.7 in text

$$
\mu \mathrm{F}=1 \cdot 10^{-6} \cdot \text { farad } \quad \mathrm{pF}=1 \cdot 10^{-12} \cdot \text { farad }
$$

$$
{ }^{\mathrm{v}} \mathrm{C}=\frac{1}{\mathrm{C}} \cdot \int_{-\infty}^{\mathrm{t}} \mathrm{i}_{\mathrm{C}} \mathrm{dt}
$$

$$
\text { Or... } \quad{ }^{\mathrm{v}} \mathrm{C}=\frac{1}{\mathrm{C}} \cdot \int_{0}^{\mathrm{t}} \quad{ }^{\mathrm{i}} \mathrm{C}^{\mathrm{dt}+{ }^{\mathrm{v}} \mathrm{C}^{(0)}}
$$

$$
\text { Or... } \Delta v_{C}=\frac{1}{\mathrm{C}} \cdot \int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}} \mathrm{i}_{\mathrm{C}}^{\mathrm{dt}}
$$

Large cap markings

Small cap markings

For way more about capacitors, see Section 3.6 of textbook.
Especially, see Figure 3.66 for more information about markings.

ECE 2210 / 00 Capacitor Notes p2

Electrolytic Capacitors Typically $1 \mu \mathrm{~F}$ and larger
Construction (top view)

Wound cell, consisting of:
Anode aluminum foil, etched, covered with aluminium oxide (dielectric)

- Paper spacer impregnated with electrolyte
- Cathode aluminum foil

Rubber sealing

Almost all electrolytic capacitors are polarized. The negative terminal must always be negative with respect to the positive terminal, other wise it may be ruined.

Equivalent Capacitance in series and parallel

Parallel:

$$
\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots
$$

Series:

$$
\mathrm{C}_{\mathrm{eq}}=\frac{1}{\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}+\ldots}
$$

Capacitors are the only "backwards" components.

Initial Condition is typically found by finding the capacitor voltage just before time $\mathrm{t}=0$.

$$
\mathrm{v}_{\mathrm{C}}\left(0^{-}\right)=\mathrm{v}_{\mathrm{C}}\left(0^{+}\right)
$$

Voltage just before initial time $=$ current just after initial time
Capacitor voltage cannot change instantly

Final Condition (Steady-state)

If a circuit has been connected for "a long time", then it has reached a steady state condition. That means the currents and voltages are no longer changing.

Replace the capacitor with an open and find the voltage across the open (just like finding v_{Th}).
Applies when sources are constant (DC)

Sinusoids

$$
\begin{aligned}
& { }^{\mathrm{i}} \mathrm{C}^{(\mathrm{t})}=\mathrm{I}_{\mathrm{p}} \cdot \cos (\omega \mathrm{t}) \\
& { }^{\mathrm{v}} \mathrm{C}^{(\mathrm{t})}=\frac{1}{\mathrm{C}} \cdot \int \quad{ }^{\mathrm{i}} \mathrm{C}^{\mathrm{dt}}=\frac{1}{\mathrm{C}} \cdot \frac{1}{\omega} \cdot \mathrm{I} \mathrm{p} \cdot \sin (\omega \cdot \mathrm{t}) \quad=\frac{1}{\mathrm{C}} \cdot \frac{1}{\omega} \cdot \mathrm{I}_{\mathrm{p}} \cdot \cos (\omega \cdot \mathrm{t}-90 \cdot \mathrm{deg}) \\
& \text { indefinite integral } \\
& \ \mathrm{v}_{\mathrm{p}}^{-!} \\
& L_{\mathrm{V}_{\mathrm{p}}^{-1}}
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{p}}=\frac{1}{\omega \cdot \mathrm{C}} \cdot \mathrm{I}_{\mathrm{p}}
$$

Voltage "lags" current.
This should make sense to you, since current has to flow in first to charge capacitor.

Examples

Ex 1

$\mathrm{C}_{1}+\mathrm{C}_{2}=12 \cdot \mu \mathrm{~F}$

Ex 2 This circuit has been connected as shown for a long time. Find the energy stored in the cap.

$\mathrm{W}_{\mathrm{C}}:=\frac{1}{2} \cdot \mathrm{C} \cdot \mathrm{V}_{\mathrm{C}}{ }^{2}$ $\mathrm{W}_{\mathrm{C}}=3.6 \cdot \mathrm{~mJ}$

Ex 3 The voltage across a $0.5 \mu \mathrm{~F}$ capacitor is shown below.
ECE 2210 / 00
Make an accurate drawing of the capacitor current. Label the y-axis of your graph.

$$
\mathrm{C}:=0.5 \cdot \mu \mathrm{~F}
$$

ECE 2210/00 Inductor Lecture Notes

$\mathrm{L}=\mu \cdot \mathrm{N}^{2} \cdot \mathrm{~K}$
μ is the permeability of the inductor core
K is a constant which depends on the inductor geometry
N is the number of turns of wire

$$
\begin{aligned}
\text { Units: henry } & =\frac{\text { volt } \cdot \mathrm{sec}}{\mathrm{amp}} & & \mathrm{mH}
\end{aligned}=10^{-3} \cdot \mathrm{H}, ~\left(\begin{array}{rl}
& =10^{-6} \cdot \mathrm{H}
\end{array}\right.
$$

Basic equations and Concepts you should know:

$1-2 \mathrm{~ms}: \quad{ }^{\mathrm{i}} \mathrm{C}=\mathrm{C} \cdot \frac{\Delta \mathrm{V}}{\Delta \mathrm{t}}=0.5 \cdot \mu \mathrm{~F} \cdot \frac{-4 \cdot \mathrm{~V}}{2 \cdot \mathrm{~ms}}=-1 \cdot \mathrm{~mA}$
$2 \mathrm{~ms}-6 \mathrm{~ms}$: Initial slope is zero and the final slope is positive, so the current must be a triangle that starts at zero and ends at some height.
$\Delta v_{C}(\mathrm{t})=\frac{1}{\mathrm{C}} \cdot \int_{6 \mathrm{~ms}}^{2 \mathrm{~ms}}{ }^{\mathrm{i}} \mathrm{C}^{(\mathrm{t}) \mathrm{dt}}$

$$
\begin{aligned}
8 \cdot \mathrm{~V} & =\frac{1}{\mathrm{C}} \cdot\left(\frac{4 \cdot \mathrm{~ms} \cdot \text { height }}{2}\right) \\
\text { height } & =8 \cdot \mathrm{~V} \cdot \frac{\mathrm{C} \cdot 2}{4 \cdot \mathrm{~ms}}=2 \cdot \mathrm{~mA}
\end{aligned}
$$

$6 \mathrm{~ms}-8 \mathrm{~ms}$: Slope is zero, so the current must be zero.

$$
{ }^{\mathrm{v}} \mathrm{~L}=\mathrm{L} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i} \mathrm{~L}
$$

Energy stored in electric field: $\quad \mathrm{W}_{\mathrm{L}}=\frac{1}{2} \cdot \mathrm{~L} \cdot \mathrm{I} \mathrm{L}^{2}$
Inductor current cannot change instantaneously

ECE 2210/00 Inductor Notes p5

series:

$$
\mathrm{L}_{\mathrm{eq}}=\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}+\ldots
$$

$$
L_{1} L_{2} L_{5}
$$

parallel:

$$
\begin{aligned}
\mathrm{L}_{\mathrm{eq}} & =\frac{1}{\frac{1}{\mathrm{~L}_{1}}+\frac{1}{\mathrm{~L}_{2}}+\frac{1}{\mathrm{~L}_{3}}+\ldots} \\
& \mathrm{L}_{1} \mathrm{~S} \mathrm{~L}_{2} \mathrm{~S} \mathrm{~L}_{3} \mathrm{~S}
\end{aligned}
$$

"Energizing" an Inductor

Initial Condition is typically found by finding the inductor current just before time $\mathrm{t}=0$.

$$
\mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)
$$

Current just before initial time = current just after initial time Inductor current cannot change instantly

Final Condition (Steady-state)

If a circuit has been connected for "a long time", then it has reached a steady state condition. that means the currents and voltages are no longer changing.

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{L}}=0 \quad{ }^{\mathrm{v}} \mathrm{~L}=\mathrm{L} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{L}}=0
$$

Replace the inductor with a short and find the voltage across the.
Applies when sources are constant (DC)

Sinusoids

Voltage "leads" current.
This should make sense to you, since voltage has to present to make current change, so voltage comes first.

Resonance At what frequency does $-\mathrm{L} \cdot \omega \cdot \mathrm{I} \cdot \mathrm{p} \cdot \sin (\omega \cdot \mathrm{t})+\frac{1}{\mathrm{C}} \cdot \frac{1}{\omega} \cdot \mathrm{I} \mathrm{p} \cdot \sin (\omega \cdot \mathrm{t}) \quad=0$??

Series resonance

$$
\mathrm{L} \cdot \omega_{\mathrm{o}} \cdot \mathrm{I} \mathrm{p}=\frac{1}{\mathrm{C}} \cdot \frac{1}{\omega_{\mathrm{o}}} \cdot \mathrm{I} \mathrm{p} \quad \ldots \quad \omega_{\mathrm{o}}=\frac{1}{\sqrt{\mathrm{~L} \cdot \mathrm{C}}}\left(\frac{\mathrm{rad}}{\mathrm{sec}}\right)
$$

> looks like
> a short at resonance frequency

The resonance frequency is calculated the same way for either case:

$$
\omega_{\mathrm{o}}=\frac{1}{\sqrt{\mathrm{~L} \cdot \mathrm{C}}}\left(\frac{\mathrm{rad}}{\mathrm{sec}}\right) \quad \text { OR.. } \quad \omega_{\mathrm{o}}=\frac{1}{\sqrt{\mathrm{~L}_{\mathrm{eq}} \cdot \mathrm{C}_{\mathrm{eq}}}} \begin{align*}
& \text { If you have multiple capacitors or } \tag{Hz}\\
& \text { inductors which can be combined. }
\end{align*} \quad \mathrm{f}_{\mathrm{o}}=\frac{\omega_{\mathrm{o}}}{2 \cdot \pi}
$$

IF $\mathrm{C}:=0.58 \cdot \mu \mathrm{~F} \quad \mathrm{~L}:=4 \cdot \mathrm{mH} \quad$ Then $\mathrm{f}_{\mathrm{o}}=\frac{1}{2}=3.3 \cdot \mathrm{kHz} \quad$ And you get these frequency response curves:

You will soon learn more about reactance and impedance.

Examples

Ex 1 The circuit has been connected as shown for a long time. Find the energy stored in the capacitor and the inductor.

ECE 2210 / 00 Capacitor / Inductor Notes p7

Ex 2 Find the resonant frequency (or frequencies) of the circuit shown (in cycles/sec or Hz).

$$
\begin{array}{ll}
\mathrm{L}_{\mathrm{eq}}:=\frac{1}{\frac{1}{\mathrm{~L}_{1}}+\frac{1}{\mathrm{~L}_{2}}} & \mathrm{~L}_{\mathrm{eq}}=2.5 \cdot \mathrm{mH} \\
\mathrm{C}_{\mathrm{eq}}:=\frac{1}{\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}} & \mathrm{C}_{\mathrm{eq}}=3 \cdot \mu \mathrm{~F} \\
\omega_{\mathrm{o}}:=\frac{1}{\sqrt{\mathrm{~L}_{\mathrm{eq}} \cdot \mathrm{C}_{\mathrm{eq}}}} & \omega_{\mathrm{o}}=11547 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}
\end{array}
$$

$$
\mathrm{f}_{\mathrm{o}}=\frac{\omega_{\mathrm{o}}}{2 \cdot \pi}=1838 \cdot \mathrm{~Hz}
$$

Ex 3 The current through a 0.3 mH inductor is shown below. Make an accurate drawing of the inductor voltage. Make reasonable assumptions where necessary. Label your graph.
$\mathrm{L}:=0.3 \cdot \mathrm{mH}$

$0-2 \mu \mathrm{~s}$: \quad No change in current, $\mathrm{so}: \quad \mathrm{v}_{\mathrm{L}}=0$

$2 \mu \mathrm{~s}-4 \mu \mathrm{~s}: \quad \mathrm{v}_{\mathrm{L}}=\mathrm{L} \cdot \frac{\Delta \mathrm{I}}{\Delta \mathrm{t}}=0.3 \cdot \mathrm{mH} \cdot \frac{-0.6 \cdot \mathrm{~A}}{2 \cdot \mu \mathrm{~s}}=-90 \cdot \mathrm{~V}$
$4 \mu \mathrm{~s}-8 \mu \mathrm{~s}$: Initial slope is positive and the final slope is zero, so the voltage must be a triangle that starts at some height and ends at zero.

$$
\begin{aligned}
& \Delta \mathrm{i}_{\mathrm{L}}(\mathrm{t})=\frac{1}{\mathrm{~L}} \cdot \int_{4 \cdot \mu \mathrm{~s}}^{8 \cdot \mu \mathrm{~s}}{ }^{\mathrm{v}} \mathrm{~L}^{(\mathrm{t}) \mathrm{dt}} \\
& 0.6 \cdot \mathrm{~A}=\frac{1}{0.3 \cdot \mathrm{mH}} \cdot\left(\frac{4 \cdot \mu \mathrm{~s} \cdot \text { height }}{2}\right) \\
& \text { height }=0.6 \cdot \mathrm{~A} \cdot \frac{0.3 \cdot \mathrm{mH} \cdot 2}{4 \cdot \mu \mathrm{~s}}=90 \cdot \mathrm{~V}
\end{aligned}
$$

$8 \mu \mathrm{~s}-10 \mu \mathrm{~s}$: No change in current, so: $\mathrm{v}_{\mathrm{L}}=0$

Ex 4 Given an inductor voltage, find the current.
$\mathrm{L}:=4 \cdot \mathrm{mH}$

$$
\begin{aligned}
& \text { 1-2 } \mathrm{s} \text { : } \\
& \Delta \mathrm{i}_{\mathrm{L}}(\mathrm{t})=\frac{1}{\mathrm{~L}} \cdot \int_{1 \cdot \mu \mathrm{~s}}^{2 \cdot \mu \mathrm{~s}} \begin{aligned}
20 \cdot \mathrm{~V} \mathrm{dt} & =5 \cdot \mathrm{~mA} \\
& =\text { change }
\end{aligned} \\
& \text { from 1-2 } 2 \text { s } \\
& 4 \mu s-8 \mu s: \\
& \Delta \mathrm{i}_{\mathrm{L}}(\mathrm{t})=\frac{1}{\mathrm{~L}} \cdot \int_{4 \cdot \mu \mathrm{~s}}^{8 \cdot \mu \mathrm{~s}} \begin{aligned}
-10 \cdot \mathrm{~V} \mathrm{dt} & =-10 \cdot \mathrm{~mA} \\
& =\text { change }
\end{aligned} \\
& \text { from } 4 \mu \mathrm{~s}-8 \mu \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
& 8 \mu \mathrm{~s}-10 \mu \mathrm{~s}: \\
& \Delta \mathrm{i}_{\mathrm{L}}(\mathrm{t})=\frac{1}{\mathrm{~L}} \cdot \int_{8 \cdot \mu \mathrm{~s}}^{10 \cdot \mu \mathrm{~s}} \mathrm{~V}(\mathrm{t}) \mathrm{dt} \\
&=\frac{1}{\mathrm{~L}} \cdot \frac{20 \cdot \mathrm{~V} \cdot 2 \cdot \mu \mathrm{~s}}{2}=5 \cdot \mathrm{~mA}=\text { change } \\
& \text { from } 8 \mu \mathrm{~s}-10 \mu \mathrm{~s}
\end{aligned}
$$

Voltage ramps from 0 to +20 V , so current curve progresses from 0 slope to a positive slope
$\begin{aligned} & 10 \mu \mathrm{~s}-14 \mu \mathrm{~s}: \\ & \Delta \mathrm{i}_{\mathrm{L}}(\mathrm{t})=\frac{1}{\mathrm{~L}} \cdot \int_{10 \cdot \mu \mathrm{~s}}^{14 \cdot \mu \mathrm{~s}} \mathrm{~V}(\mathrm{t}) \mathrm{dt}+0 \cdot \mathrm{~mA} \\ &=\frac{1}{\mathrm{~L}} \cdot \frac{20 \cdot \mathrm{~V} \cdot 4 \cdot \mu \mathrm{~s}}{2}=10 \cdot \mathrm{~mA}\end{aligned}$
Current curves from a positive slope to 0 slope etc...

Ex 5 The current through and the voltage across an unknown component are shown below.
a) What type of component is it?

Give a good reason for your choice.
inductor? $\quad \mathrm{v}(\mathrm{t}):=\mathrm{L} \cdot \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i}(\mathrm{t})$
Doesn't fit graphs, still have current even when voltage isn't changing.

Also Inductor current can't change instantly.

Can't be a Inductor

capacitor?
$\mathrm{i}(\mathrm{t}):=\mathrm{C} \cdot \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v}(\mathrm{t})$
This fits the graphs, $i(t)$ corresponds to slope of $v(t)$

Must be a Capacitor

b) What is the value of the component?

$$
v(3 \cdot \sec)=\frac{1}{C} \cdot \int_{0}^{3 \cdot \sec } i(t) d t+v(0)
$$

OR: $\Delta v=\frac{1}{\mathrm{C}} \cdot($ current_area $)$
$\Delta v:=16.5 \cdot \mathrm{~V}$
$\mathrm{C}=\frac{\mathrm{Q}}{\mathrm{V}} \quad$ farad $=\frac{\mathrm{coul}}{\mathrm{volt}}=\frac{\mathrm{amp} \cdot \mathrm{sec}}{\mathrm{volt}}$
Energy stored in electric field: $\mathrm{w}_{\mathrm{C}}=\frac{1}{2} \cdot \mathrm{C} \cdot \mathrm{V}_{\mathrm{C}}{ }^{2}$
parallel: $\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots$

Steady-state sinusoids:

Impedance: $\quad Z_{C}=\frac{1}{j \cdot \omega \cdot \mathrm{C}}=\frac{-\mathrm{j}}{\omega \cdot \mathrm{C}} \quad$ Current leads voltage by 90 deg

Inductors

henry $=\frac{\text { volt } \cdot \mathrm{sec}}{\mathrm{amp}} \quad \mathrm{i}_{\mathrm{L}}=\frac{1}{\mathrm{~L}} \cdot \int_{-\infty}^{\mathrm{t}} \quad \mathrm{v}_{\mathrm{L}} \mathrm{dt}=\frac{1}{\mathrm{~L}} \cdot \int_{0}^{\mathrm{t}} \quad{ }^{\mathrm{v}} \mathrm{D}^{\mathrm{dt}}+\mathrm{i} \mathrm{i}_{\mathrm{L}}(0) \quad$ initial current $\quad{ }^{\mathrm{v}} \mathrm{L}=\mathrm{L} \cdot \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i} \mathrm{L}$
Energy stored in magnetic field: $\mathrm{W}_{\mathrm{L}}=\frac{1}{2} \cdot \mathrm{~L} \cdot \mathrm{I}_{\mathrm{L}}{ }^{2}$
series: $\mathrm{L}_{\mathrm{eq}}=\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}+\ldots$

$$
L_{1} x_{3} L_{3}
$$

Steady-state sinusoids:

Impedance: $\mathrm{Z}_{\mathrm{L}}=\mathrm{j} \cdot \omega \mathrm{L} \quad$ Current lags voltage by 90 deg
Inductor current cannot change instantaneously
parallel: $\mathrm{L}_{\mathrm{eq}}=\frac{1}{\frac{1}{\mathrm{~L}_{1}}+\frac{1}{\mathrm{~L}_{2}}+\frac{1}{\mathrm{~L}_{3}}}+\ldots$

RC and RL first-order transient circuits

Find initial Conditions $\quad\left(\mathrm{v}_{\mathrm{C}}\right.$ and/or $\left.\mathrm{i}_{\mathrm{L}}\right)$
Find conditions just before time $\mathrm{t}=0, \mathrm{v}_{\mathrm{C}}\left(0_{-}\right)$and $\mathrm{i}_{\mathrm{L}}(0-)$. These will be the same just after time $\mathrm{t}=0, \mathrm{v}_{\mathrm{C}}\left(0^{+}\right)$and $\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)$ and will be your initial conditions. (If initial conditions are zero: Capacitors are shorts, Inductors are opens.)
Use normal circuit analysis to find your desired variable: ${ }^{\mathrm{v}} \mathrm{X}^{(0)}$ or ${ }^{\mathrm{i}} \mathrm{X}^{(0)}$
Find final conditions ("steady-state" or "forced" solution)
Inductors are shorts Capacitors are opens Solve by DC analysis ${ }^{\mathrm{v}} \mathrm{X}^{(\infty)}$ or $\mathrm{i}_{\mathrm{X}}(\infty)$
RC Time constant $=\tau=$ RC

RL Time constant $=\tau=\frac{\mathrm{L}}{\mathrm{R}}$

$$
\mathrm{e}^{-1}=0.368 \quad 1-\mathrm{e}^{-1}=0.632
$$

