ECE 2210/00 Exam 1 given: Fall 05

(The space between problems has been removed.)
To get the most possible partial credit, always show all the intermediate values that you can calculate. If further calculations depend on a value that you can't figure out, just use a letter (like $\mathrm{I}_{\mathrm{R} 1}$) or a guessed value and proceed.

Note: feel free to show answers \& work right on the schematic

1. (18 pts) The ammeter, A, reads 25 mA .
a) The power dissipated by R_{4} is 0.4 W , what is the value of R_{4}. Assume that the ammeter is ideal (has no resistance).
b) What is the value of V_{S} ?
c) How much power is provided by the source?

2. (18 pts) a) Use the method of superposition to find the current through R_{3}. Be sure to clearly show and circle your intermediate results.

3. (18 pts) An ideal voltmeter is hooked to the terminals of a temperature sensor and measures 120 mV when the sensor is at $60^{\circ} \mathrm{F}$. A $10 \mathrm{k} \Omega$ load resistor is hooked to the sensor and the voltmeter now reads 80 mV .
a) Draw a simple, reasonable model (think Thevenin) of the $60^{\circ} \mathrm{F}$ temperature sensor. Find the value of each part of the model. (Recall what you did in the lab with the "Input Position" potentiometer.)

The temperature sensor remains $60^{\circ} \mathrm{F}$ for the rest of this problem.
b) The ideal voltmeter and the $10 \mathrm{k} \Omega$ resistor are removed and replaced by a non-ideal voltmeter that has an internal resistance of $20 \mathrm{k} \Omega$ (that means it looks like a $20 \mathrm{k} \Omega$ load resistor). What does this voltmeter show? (Give me a voltage value.)
c) The voltmeter is removed and the sensor is hooked to a circuit which makes $10 \mu \mathrm{~A}$ flow back into the temperature sensor. (The current is flowing in the opposite direction as in parts a and $b, a b o v e$).
What voltage would you expect accoss the terminals of the sensor now?

ECE 2210/00 Exam 1 Fall 05 p

4. (23 pts)
a) Use nodal analysis to find the voltage across $\mathrm{R}_{2}\left(\mathrm{~V}_{\mathrm{R} 2}\right)$.

You MUST show all the steps of nodal analysis work to get credit, including drawing appropriate symbols and labels on the circuit shown.

Remember, you want to find $\mathrm{V}_{\mathrm{R} 2}$.
b) Find the current through $\mathrm{R}_{3}\left(I_{3}\right)$.

$\mathrm{I}_{\mathrm{S}}:=40 \cdot \mathrm{~mA}$
5. (13 pts) For the waveform shown, find a complete expression for $v(t)$ as a cosine wave. Include numbers and units.

6. (10 pts) The circuit below has been connected as shown for a long time

a) Find the voltage across each capacitor. $\quad \mathrm{V}_{\mathrm{C} 1}=$? $\quad \mathrm{V}_{\mathrm{C} 2}=$?
b) How much energy is stored in capacitor C_{2}.

Answers

1.a) $40 \cdot \Omega$
b) $8 \cdot \mathrm{~V}$
3.a)

c) $0.8 \cdot \mathrm{~W}$
2. $1 \cdot \mathrm{~mA}-3 \cdot \mathrm{~mA}=-2 \cdot \mathrm{~mA}$
b) $96 \cdot \mathrm{mV}$
c) $170 \cdot \mathrm{mV}$
4.a) $3.72 \cdot \mathrm{~V}$
b) $-9 \cdot \mathrm{~mA}$
5. $6 \cdot \mathrm{~V} \cdot \cos \left(628.3 \cdot \frac{\mathrm{rad}}{\mathrm{sec}} \cdot \mathrm{t}-144 \cdot \mathrm{deg}\right)-2 \cdot \mathrm{~V}$
6.a) $4 \cdot V, 4 \cdot V$
b) $0.4 \cdot \mathrm{~mJ}$

ECE 2210 / 00 Midterm \#1 Arn Stolp
Name Scores:
Pages 1\&2 \qquad of a possible 36 pts

Pages 3\&4 \qquad of a possible 41 pts

Pages 5\&6 \qquad of a possible 23 pts
\qquad of a possible 100 pts

