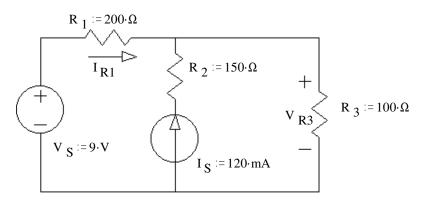
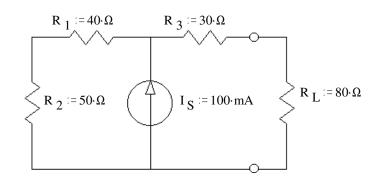

## ECE 2210/00 Exam 1 given: Fall 06


(The space between problems has been removed.)

1. (20 pts) In the circuit shown the ammeter is ideal and measures  $10 \, \mathrm{mA}$ . Find the voltage source ( $V_S$ ), the power input by the source ( $P_S$ ), and the resistor values;  $R_3$  and  $R_4$ .



Reminder, you were asked for 4 items:  $V_S$ ,  $P_S$ ,  $R_3$ , and  $R_4$ .


2. (18 pts) Use the method of superposition to find the current through  $R_1$  ( $I_{R1}$ ) and the voltage across  $R_3$  ( $V_{R3}$ ). Be sure to clearly show and **circle** your intermediate results.



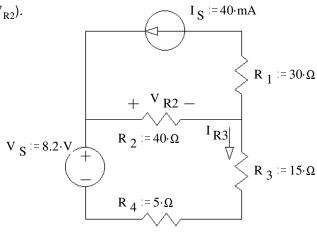
Reminder, you were asked for 2 items:  $I_{R1}$  and  $V_{R3}$ .

Be sure to clearly show and circle your intermediate results.

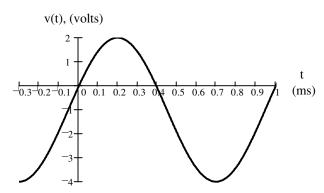
- 3. (24 pts) a) Find and draw the Thévenin equivalent of the circuit shown. The load resistor is  $\rm R_{\rm L}$ .
  - b) Find and draw the Norton equivalent of the same circuit.
  - c) Find power dissipated in the load  $(R_L)$ .



d) What value of load resistor  $(R_I)$  would you choose if you wanted to maximize the power dissipation in the load.


## ECE 2210/00 Exam 1 Fall 06 p2

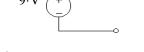
4. (20 pts) Use nodal analysis to find the voltage across  $\rm R_2$  ( $\rm V_{R2}$ ).

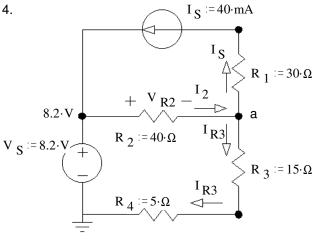

You **MUST** show all the steps of nodal analysis work to get credit, including drawing appropriate symbols and labels on the circuit shown.

Remember, you want to find  $V_{R2}$ .

b) Find the current through  $R_3$  ( $I_{R3}$ ).




- 5. (18 pts) For the waveform shown, find:
  - a) peak-to-peak voltage,  $V_{pp}$
  - b) amplitude, A
  - c) period, T
  - d) frequency f in cycles/sec or Hz
  - e) frequency  $\omega$  in radians/sec
  - f) the phase angle in degrees
  - g) a complete expression for v(t), include numbers and units




## **Answers**

- 1.  $12 \cdot V = 0.36 \cdot W = 200 \cdot \Omega = 250 \cdot \Omega$
- 2. -10·mA 11·V c) 162·mW

- 3. a)  $120 \cdot \Omega$
- b)
  75·mA
  120·Ω
- d) 120·Ω





5. a)  $6 \cdot V$  b)  $3 \cdot V$  c)  $1 \cdot ms$  d)  $1 \cdot kHz$  e)  $6283 \cdot \frac{rad}{sec}$  f)  $-72^{\circ}$  g)  $3 \cdot V \cdot cos \left( 6283 \cdot \frac{rad}{sec} \cdot t - 72 \cdot deg \right) - 1 \cdot V$ 

a) 6·V b) 110·mA

Page 5

## ECE 2210 / 00 Midterm #1 Arn Stolp

Name \_\_\_\_\_\_\_ of a possible 38 pts

Pages 3&4 \_\_\_\_\_ of a possible 44 pts

Total \_\_\_\_\_ of a possible 100 pts

\_\_\_\_\_ of a possible 18 pts