ECE 2210/00 Exam 1 given: Fall 07
 (The space between problems has been removed.)

To get the most possible partial credit, always show all the intermediate values that you can calculate. If further calculations depend on a value that you can't figure out, just use a symbol (like $\mathrm{I}_{\mathrm{R} 1}$) or a guessed value and proceed.

1. (19 pts) Show your work

Note: feel free to show answers \& work right on the schematic
a) $\mathrm{R}_{1}=$?
b) $\mathrm{R}_{2}=$?
a) $\mathrm{R}_{1}=$?
c) How much power is dissipated by R_{4} ? $\quad \mathrm{P}_{\mathrm{R} 4}=$?
2. (20 pts) Use the method of superposition to find the voltage across $\mathrm{R}_{2}\left(\mathrm{~V}_{\mathrm{R} 2}\right)$ and the current through $\mathrm{R}_{3}\left(\mathrm{I}_{\mathrm{R} 3}\right)$. Be sure to clearly show and circle your intermediate results.

3. (18 pts) A Lithium-lon battery pack is used to power an MP3 Player. When the player is switched on the battery pack voltage drops from 3.80 V to 3.75 V and the player draws 10 mA .
a) Draw a simple, reasonable model of the battery pack using ideal parts. Find the value of each part.
b) When MP3 player is used to play loud music it draws 40 mA . What is the battery pack voltage now?
c) The battery pack is placed in a charger. The charger supplies 4.50 V . How much current flows into the battery pack?
4. (7 pts) Consider the circuit at right.
a) What value of load resistor $\left(R_{L}\right)$ would you choose if you wanted to maximize the power dissipation in that load resistor.

Note: If you don't know how to find this, make a guess so that you can calculate an answer for part b).
b) With that load resistor $\left(\mathrm{R}_{\mathrm{L}}\right)$ find the power dissipation in the load.

ECE 2210/00 Exam 1 Fall 07 p2

5. (20 pts) a) Use nodal analysis to find the voltage across $\mathrm{R}_{1}\left(\mathrm{~V}_{\mathrm{RI}}\right)$.

You MUST show all the steps of nodal analysis work to get credit, including drawing appropriate symbols and labels on the circuit shown.

b) Find the current through $\mathrm{R}_{3}\left(\mathrm{I}_{\mathrm{R} 3}\right)$.
6. (8 pts) Find C_{eq} between the terminals.

7. (8 pts) The following circuit has been connected as shown for a long time.

Find the voltage across the capacitor and the energy stored in it.

Answers

1. a) $500 \cdot \Omega$
b) $1.25 \cdot \mathrm{k} \Omega$
c) $12 \cdot \mathrm{~mW}$
2. $50 \cdot \mathrm{~mA}$ $-5 \cdot \mathrm{~V}$
3. a)

b) $3.6 \cdot \mathrm{~V}$
c) $140 \cdot \mathrm{~mA}$
4. a) $8 \cdot \Omega$
b) $2 \cdot \mathrm{~W}$

ECE 2210 / 00 Midterm \#1 Arn Stolp
Name
Scores:
Pages 1\&2 \qquad of a possible 39 pts

Pages 3\&4 \qquad of a possible 45 pts

Page 5 \qquad of a possible 16 pts

Total \qquad of a possible 100 pts

