1. (24 pts) Find the resistor values. Show your work

Note: feel free to show answers & work right on the schematic

a) \(R_4 = ? \)
b) \(R_3 = ? \)
c) \(I_S = ? \)

2. (20 pts) Use the method of superposition to find the voltage across \(R_3 \) (\(V_{R3} \)) and the current through \(R_2 \) (\(I_{R2} \)). Be sure to clearly show and circle your intermediate results.

3. (27 pts) a) Find and draw the Thévenin equivalent of the circuit shown.

The load resistor is \(R_L \).

b) Find and draw the Norton equivalent of the same circuit.

c) Find the power dissipated in the load using your Thévenin equivalent circuit.

\(P_{RL} = ? \)

d) Select a load resistor to maximize the power delivered to the load and find that maximum power.

\(P_{RLmax} = ? \)
4. (18 pts) a) Use nodal analysis to find the voltage across $R_3 (V_{R3})$.

You **MUST** show all the steps of nodal analysis work to get credit, including drawing appropriate symbols and labels on the circuit shown.

b) Find the current through $R_2 (I_{R2})$.

$I_{R2} =$?

5. (11 pts)

a) Find C_{eq} between terminals a and b.

b) Find C_{eq} between terminals c and d.

Answers

1. a) 2-kΩ b) 850-Ω c) 29-mA

2. 4-mA - 5-mA = -1-mA 4.8-V + 3-V = 7.8-V

3. a) 250-Ω b) 28.8-mA c) 28.8-mW d) 51.84-mW

4. a) 6-V
b) 10-mA

5. a) 4-µF b) 20-µF