ECE 2210/00 Exam 1 given: Fall 09
 (The space between problems has been removed.)

1. (23 pts) Find the values below. Show your work

Note: feel free to show answers \& work right on the schematic
a) $\mathrm{R}_{1}=$?
b) $\mathrm{R}_{3}=$?
c) $\mathrm{P}_{\mathrm{S}}=$?
$\mathrm{R}_{2}:=150 \cdot \Omega$

c) $\mathrm{P}_{\mathrm{S}}=$?

Remember, You were asked for 3 things, $\mathrm{R}_{1}, \mathrm{R}_{3}, \& \mathrm{P}_{\mathrm{S}}$. Circle your answers!
2. (20 pts) Use the method of superposition to find the voltage across $\mathrm{R}_{2}\left(\mathrm{~V}_{\mathrm{R} 2}\right)$ and the current through $\mathrm{R}_{4}\left(\mathrm{I}_{\mathrm{R} 4}\right)$.

Be sure to redraw the circuit as needed and to clearly show and circle your intermediate results.

Remember, You were asked for 2 things, $\mathrm{V}_{\mathrm{R} 2}$ and $\mathrm{I}_{\mathrm{R} 4}$.
3. (18 pts) A rechargeable battery is shorted with an ideal ammeter. The ammeter reads 1.5 A .

The ammeter is replaced with an ideal voltmeter. The voltmeter reads 12 V .
a) Draw a simple, reasonable model of the battery pack using ideal parts. Find the value of each part.
b) The battery is hooked to a load resistor and the terminal voltage drops to 10 V . Find the value of the load resistor.
c) What voltage would be required to charge this battery at 200 mA ?
d) What is the maximum power this battery can supply to a load resistor $\left(R_{L}\right)$? You may use whatever R_{L} you want.
4. (23 pts) Use nodal analysis to find the voltage across $\mathrm{R}_{5}\left(\mathrm{~V}_{\mathrm{R} 5}\right)$ and

ECE 2210/00 Exam 1 Fall 09 p2 the current through $\mathrm{R}_{1}\left(\mathrm{I}_{\mathrm{R} 1}\right)$. .
You MUST show all the steps of nodal analysis work to get credit, including drawing appropriate symbols and labels on the circuit shown.

Remember, You were asked for 2 things, $\mathrm{V}_{\mathrm{R} 5}$ and $\mathrm{I}_{\mathrm{R} 1}$.
5. (16 pts) For the waveform shown, find: $\mathrm{v}(\mathrm{t})$, (volts)
a) peak-to-peak voltage, V_{pp}
b) amplitude, A
c) period, T
d) frequency f in cycles $/ \mathrm{sec}$ or Hz
e) frequency ω in radians $/ \mathrm{sec}$
f) the phase angle in degrees

g) a complete expression for $\mathrm{v}(\mathrm{t})$, include numbers and units

Answers

1. a) $350 \cdot \Omega$
b) $250 \cdot \Omega$
c) $700 \cdot \mathrm{~mW}$
2. $2.5 \cdot \mathrm{~V}-1.625 \cdot \mathrm{~V}=0.875 \cdot \mathrm{~V}$
$5 \cdot \mathrm{~mA}+1.25 \cdot \mathrm{~mA}=6.25 \cdot \mathrm{~mA}$
3. a)

b) $40 \cdot \Omega$
c) $13.6 \cdot \mathrm{~V}$
d) $4.5 \cdot \mathrm{~W}$
4. $9 \cdot \mathrm{~V} \quad-30 \cdot \mathrm{~mA}$
5. a) $10 \cdot \mathrm{~V}$
b) $5 \cdot \mathrm{~V}$
c) $50 \cdot \mu \mathrm{~s}$
d) $20 \cdot \mathrm{kHz}$ e) $1.26 \cdot 10^{5} \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
f) -72°
g) $5 \cdot \mathrm{~V} \cdot \cos \left(1.26 \cdot 10^{5} \cdot \frac{\mathrm{rad}}{\mathrm{sec}} \cdot \mathrm{t}-72 \cdot \mathrm{deg}\right)-1 \cdot \mathrm{~V}$
ECE 2210 / 00 Midterm \#1 Arn Stolp
Name
Scores:
Pages 1\&2 \qquad of a possible 43 pts
Pages $3 \& 4$ \qquad of a possible 41 pts
Page 5 \qquad of a possible 16 pts
\qquad of a possible 100 pts
