1. (22 pts) Find the values below. Show your work.

Note: feel free to show answers \& work right on the schematic
a) $\mathrm{R}_{4}=$?
b) $\mathrm{R}_{3}=$?
c) $\mathrm{I}_{\mathrm{S}}=$?
c)
$\mathrm{I}_{\mathrm{S}}=$?
$\mathrm{R}_{1}:=1 \cdot \mathrm{k} \Omega$

$\rangle \mathrm{P}_{\mathrm{R} 3}:=356 \cdot \mathrm{~mW}$
b) $\mathrm{R}_{3}=$?

Ideal voltmeter reads 1.6 V .
2. (18 pts) Use the method of superposition to find $V_{R 2}$ and $I_{R 3}$.

Be sure to redraw the circuit as needed and to clearly show and circle your intermediate results.

3. (24 pts) a) Find and draw the Thévenin equival ent of the circuit shown. The load resistor is R_{L}.
b) Find the load current using your Thévenin equivalent circuit.

c) Choose a different value of R_{L} so as to maximize the power dissipated in R_{L}. Find that maximum power
4. (20 pts) Use nodal analysis to find the readings of the two ideal meters.

ECE 2210/00 Exam 1 Fall 10 p2
You MUST show all the steps of nodal analysis work to get credit, including drawing appropriate symbols and labels on the circuit shown.

5. (10 pts) This circuit has been hooked up for a long time.

Find the voltage across the capacitor and the energy stored in the capacitor.

6. (6 pts) Find C_{eq} between terminals a and b .

Answers

1. a) $1.76 \cdot \mathrm{k} \Omega$
b) $890 \cdot \Omega$
C) $29 \cdot \mathrm{~mA}$
2. $16 \cdot \mathrm{~V}+20 \cdot \mathrm{~V}=36 \cdot \mathrm{~V}$
$4 \cdot \mathrm{~mA}-4 \cdot \mathrm{~mA}=0 \cdot \mathrm{~mA}$

b) $7.7 \cdot \mathrm{~mA}$
3. $1.5 \cdot \mathrm{~V}$
$55 \cdot \mathrm{~mA}$
c) $185 \cdot \mathrm{~mW}$
4. $6.455 \cdot \mathrm{~V} \quad 857 \cdot \mathrm{~mJ}$
5. $3.6 \cdot \mu \mathrm{~F}$

ECE 2210 / 00 Midterm \#1 Arn Stolp
Name
Scores:
Pages 1\&2 \qquad of a possible 40 pts

Pages $3 \& 4$ \qquad of a possible 44 pts

Pages 5\&6 \qquad of a possible 16 pts
\qquad of a possible 100 pts

