ECE 2210/00 Exam 1 given: Fall 14 (The space between problems has been removed.)

To get the most possible partial credit, always show all the intermediate values that you can calculate. If further calculations depend on a value that you can't figure out, just use a letter (like $\mathrm{I}_{\mathrm{R} 1}$) or a guessed value and proceed.

1. (24 pts) In the circuit shown we measure the voltage across R_{4} as 2.0 V . The power dissipated by R_{1} is 6 mW .
a) What must V_{S} be?
b) What is the value of R_{1} ?
c) How much power does R_{4} dissipate?

2. (25 pts) a) Use the method of superposition to find $\mathrm{V}_{\mathrm{R} 1}$ and $\mathrm{I}_{\mathrm{R} 2}$. Be sure to clearly show and circle your intermediate results.

3. (18 pts)
a) Find and draw the Thévenin equivalent of the circuit shown. The load resistor is R_{L}.

b) Find and draw the Norton equivalent of the same circuit.
c) Find the power dissipated by the load.
4. (24 pts) Use nodal analysis to a) find the voltage across $\mathrm{R}_{2}\left(\mathrm{~V}_{\mathrm{R} 2}\right)$.

You MUST show all the steps of nodal analysis work to get credit, including drawing appropriate symbols and labels on the circuit shown.
b) Find the current through $\mathrm{R}_{3}\left(\mathrm{I}_{3}\right)$.

5. (8 pts) Find C_{eq} between terminals a and b .

Answers

1. a) $7.4 \cdot \mathrm{~V}$
b) $26.67 \cdot \Omega$
c) $10 . \mathrm{mW}$
2. $2 \cdot \mathrm{~mA}-6 \cdot \mathrm{~mA}=-4 \cdot \mathrm{~mA}$
$6 \cdot V+18 \cdot V=24 \cdot V$
3. a)

c) $0.48 \cdot \mathrm{~W}$
4. $3.72 \cdot \mathrm{~V}-9 \cdot \mathrm{~mA}$
5. $4.2 \cdot \mu \mathrm{~F}$
