EE1050/60 Exam 1 given: Spring 02 (The space between problems has been removed.)

Remember, to get the most possible partial credit, always show all the intermediate values that you can calculate. If further calculations depend on a value that you can't figure out, just use a letter (like $\mathrm{I}_{\mathrm{R} 1}$) or a guessed value and proceed.

Note: feel free to show answers \& work right on the schematic

1. (16 pts) In the circuit shown, find:
a) The voltage across $R_{2} . \quad V_{R 2}=$?
b) The current through $R_{3} . \quad I_{R 3}=$?

2. (20 pts) In the circuit shown find the voltage source $\left(\mathrm{V}_{\mathrm{S}}\right)$, the power input by the source $\left(P_{S}\right)$, and the resistor values; R_{3} and R_{4}.

Reminder, you were asked for 4 items: V_{S}, P_{S}, R_{3}, and R_{4}.

3. (19 pts) a) Use the method of superposition to find the current through R_{2}. Be sure to clearly show and circle your intermediate results.

4. (16 pts) Nodal analysis.
a) Select a ground (reference) node and label it on the schematic (draw ground symbol).
b) Label other nodes and currents as necessary to perform nodal analysis.
c) How many simultaneous equations will you need to perform this analysis?
d) Write all the necessary equations in terms of the resistors, the sources, and the unknown nodes. Just write and circle the equations, do
 not try to simplify or solve them.

EE1050/60 Exam 1 Spring 02 p1

EE1050/60 Exam 1 Spring 02 p2

5. (20 pts) For the waveform shown, find:
a) peak-to-peak voltage, $V_{p p}$
b) amplitude, A
c) period, T
d) frequency f in cycles $/ \mathrm{sec}$ or Hz
e) frequency ω in radians $/ \mathrm{sec}$
f) the phase angle in degrees
g) a complete expression for $\mathrm{v}(\mathrm{t})$, include numbers and units

The questions below are similar to what you might see on the FE exam. They expect you to average about 2 minutes per question.
6. (4 pts) Find the magnitude and sign of the power, in watts, absorbed by the circuit element in the box.
a) -20
b) -8
c) 8
d) 12

7. (5 pts) What are the Thevenin equivalent resistance and voltage between terminals A and B ?
a) $\mathrm{R}_{\mathrm{Th}}=3 \Omega, \mathrm{~V}_{\mathrm{Th}}=45 \mathrm{~V}$
b) $\mathrm{R}_{\mathrm{Th}}=7.5 \Omega, \mathrm{~V}_{\mathrm{Th}}=7.5 \mathrm{~V}$
c) $\mathrm{R}_{\mathrm{Th}}=7.5 \Omega, \mathrm{~V}_{\mathrm{Th}}=60 \mathrm{~V}$
d) $\mathrm{R}_{\mathrm{Th}}=12 \Omega, \mathrm{~V}_{\mathrm{Th}}=5 \mathrm{~V}$

Hint: You don't have to figure out the entire Thevenin equivalent circuit to figure out which answer is right.

Answers

1. a) $4 \cdot V$
b) $53.3 \cdot \mathrm{~mA}$
2. $\mathrm{V}_{\mathrm{S}}:=7.4 \cdot \mathrm{~V} \quad \mathrm{P}_{\mathrm{S}}:=.215 \cdot \mathrm{~W} \quad \mathrm{R}_{3}:=200 \cdot \Omega \quad \mathrm{R}_{4}:=300 \cdot \Omega$
3. $\mathrm{I}_{\mathrm{R} 2 . \mathrm{V}}:=1.5 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{R} 2 . \mathrm{I}}:=-2 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{R} 2}:=-0.5 \cdot \mathrm{~mA}$
4. a) \& b)
c) 2
d)

$$
\frac{\mathrm{v}_{\mathrm{S}}-\mathrm{V}_{\mathrm{a}}}{\mathrm{R}_{1}}=\frac{\mathrm{V}_{\mathrm{a}}-0}{\mathrm{R}_{2}}+\frac{\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}}{\mathrm{R}_{3}}, \quad \frac{\mathrm{~V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}}{\mathrm{R}_{3}}=\frac{\mathrm{V}_{\mathrm{b}}-0}{\mathrm{R}_{4}}+\mathrm{I}_{\mathrm{S}}
$$

5. a) $6 \cdot \mathrm{~V}$
b) $3 \cdot \mathrm{~V}$
c) $6 \cdot \mathrm{~ms}$
d) $167 \cdot \mathrm{~Hz}$
e) $1047 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
f) -60°
g) $3 \cdot \mathrm{~V} \cdot \cos \left(1047 \cdot \frac{\mathrm{rad}}{\mathrm{sec}} \cdot \mathrm{t}-60 \cdot \mathrm{deg}\right)+1 \cdot \mathrm{~V}$
6. c
7. a

EE 1050/60 Midterm \#1
Arn Stolp
Name
Scores:
Page 1\&2 \qquad of a possible 36 pts

Page 3\&4 \qquad of a possible 35 pts

Page 5\&6 \qquad of a possible 29 pts

Total \qquad of a possible 100 pts

