ECE 2210/00 Exam 1 given: Spring 06
 (The space between problems has been removed.)

To get the most possible partial credit, always show all the intermediate values that you can calculate. If further calculations depend on a value that you can't figure out, just use a letter (like $\mathrm{I}_{\mathrm{R} 1}$) or a guessed value and proceed.

1. (20 pts) The voltmeter, V, reads 3 V .
a) The power dissipated by R_{3} is 36 mW , what is the value of R_{3}. Assume that the voltmeter is ideal (has ∞ resistance).
b) What is the value of V_{S} ?

c) How much power is provided by the source?
2. (21 pts) Use the method of superposition to find the current through $\mathrm{R}_{1}\left(\mathrm{I}_{\mathrm{R} 1}\right)$ voltage across $\mathrm{R}_{2}\left(\mathrm{~V}_{\mathrm{R} 2}\right)$.
Be sure to clearly show and circle your intermediate results.

Remember, you need $I_{R 1}$ and $V_{R 2}$
Be sure to clearly show and circle your intermediate results.

3. (21 pts) a) Find and draw the Thévenin equivalent of the circuit shown. The load resistor is R_{L}.
b) Find and draw the Norton equivalent of the same circuit.

c) Find the load current using your Thévenin equivalent circuit.

ECE 2210/00 Exam 1 Spring 06 p2
4. (20 pts) Use nodal analysis to find the voltage across $\mathrm{R}_{2}\left(\mathrm{~V}_{\mathrm{R} 2}\right)$.

You MUST show all the steps of nodal analysis
work to get credit, including drawing appropriate symbols and labels on the circuit shown.
b) Find the current through $\mathrm{R}_{3}\left(\mathrm{I}_{\mathrm{R} 3}\right)$.

5. (18 pts) For the waveform shown, find:
a) peak-to-peak voltage, V_{pp}
b) amplitude, A
c) period, T
d) frequency fin cycles/sec or Hz
e) frequency ω in radians/sec

f) the phase angle in degrees
$g)$ a complete expression for $v(t)$, include numbers and units

Answers

1. a) $4 \cdot \mathrm{~K} \Omega$
b) $14.7 \cdot \mathrm{~V}$
c) $132 \cdot \mathrm{~mW}$
2. $5.5 \cdot \mathrm{~mA}$
6.5•V

a) $7 \cdot \mathrm{~V}$
b) $100 \cdot \mathrm{~mA}$

c) $20 \cdot \mathrm{~mA}$

ECE 2210 / 00 Midterm \#1 Arn Stolp
Name
Scores:
Pages 1\&2 \qquad of a possible 41 pts
5. a) $24 \cdot \mathrm{~V}$
b) $12 \cdot \mathrm{~V}$
c) $20 \cdot \mathrm{~ms}$
d) $50 \cdot \mathrm{~Hz}$
e) $314.2 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
f) $36^{\circ} \quad$ g) $12 \cdot \mathrm{~V} \cdot \cos \left(314.2 \cdot \frac{\mathrm{rad}}{\mathrm{sec}} \cdot \mathrm{t}+36 \cdot \mathrm{deg}\right)+4 \cdot \mathrm{~V}$

Pages 3\&4 \qquad of a possible 41 pts

Total \qquad of a possible 100 pts

