ECE 2210/00 Exam 1 given: Spring 08 (The space between problems has been removed.)

To get the most possible partial credit, always show all the intermediate values that you can calculate. If further calculations depend on a value that you can't figure out, just use a symbol (like $\mathrm{I}_{\mathrm{R} 1}$) or a guessed value and proceed.

1. (21 pts) Find the resistor values. Show your work

Note: feel free to show answers \& work right on the schematic
a) $\mathrm{R}_{1}=$?
b) $\mathrm{R}_{2}=$?
c) $\mathrm{R}_{3}=$?
d) How much power is dissipated by R_{3} ?
$\mathrm{P}_{\mathrm{R} 3}=$?

Ideal ammeter
reads 80 mA .

Ideal ammeter reads 30 mA .

2. (21 pts) Use the method of superposition to find the voltage across $\mathrm{R}_{2}\left(\mathrm{~V}_{\mathrm{R} 2}\right)$ and the current through $\mathrm{R}_{1}\left(\mathrm{I}_{\mathrm{R} 1}\right)$. Be sure to clearly show and circle your intermediate results.

3. (20 pts) a) Find and draw the Thévenin equivalent of the circuit shown.
The load resistor is R_{L}.
b) Find and draw the Norton equivalent of the same circuit.
c) Find the load voltage using your Norton equivalent circuit.
d) Find the power dissipation in the load. resistor $\left(\mathrm{R}_{\mathrm{L}}\right) . \quad \mathrm{P}_{\mathrm{RL}}=$?
4. (20 pts) a) Use nodal analysis to find the voltage across $\mathrm{R}_{1}\left(\mathrm{~V}_{\mathrm{R} 1}\right)$.

You MUST show all the steps of nodal analysis work to get credit, including drawing appropriate symbols and labels on the circuit shown.
b) Find the current through $\mathrm{R}_{2}\left(\mathrm{I}_{\mathrm{R} 2}\right)$.

$$
\mathrm{I}_{\mathrm{R} 2}=?
$$

ECE 2210/00 Exam 1 Spring 08 p2

5. (18 pts) For the waveform shown, find:
a) peak-to-peak voltage, V_{pp}
b) amplitude, A
c) period, T
d) frequency f in cycles/sec or Hz
e) frequency ω in radians $/ \mathrm{sec}$
f) the phase angle in degrees
g) a complete expression for $\mathrm{v}(\mathrm{t})$, include numbers and units

Answers

1. a) $50 \cdot \Omega$
b) $120 \cdot \Omega$
c) $200 \cdot \Omega$
d) $180 \cdot \mathrm{~mW}$
2. $36 \cdot \mathrm{~mA}$
$14.4 \cdot \mathrm{~V}$
3. a)

b)
c) $3 \cdot \mathrm{~V}$
d) $180 \cdot \mathrm{~mW}$

a) $6 \cdot \mathrm{~V}$
b) $1 \cdot \mathrm{~mA}$
5 a) $10 \cdot \mathrm{~V}$
b) $5 \cdot \mathrm{~V}$
c) $2 \cdot \mu \mathrm{~s}$
d) $500 \cdot \mathrm{kHz}$
e) $3.14 \cdot 10^{6} \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
f) -144°
g) $5 \cdot \mathrm{~V} \cdot \cos \left(3.14 \cdot 10^{6} \cdot \frac{\mathrm{rad}}{\mathrm{sec}} \cdot \mathrm{t}-144 \cdot \mathrm{deg}\right)-3 \cdot \mathrm{~V}$

ECE 2210 / 00 Midterm \#1 Arn Stolp
Name
Scores:
Pages 1\&2 \qquad of a possible 42 pts

Pages 3\&4 \qquad of a possible 40 pts

Page 5 \qquad of a possible 18 pts
\qquad of a possible 100 pts

